Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells

Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular respo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology journal 2013-01, Vol.8 (1), p.59-72
Hauptverfasser: Kai, Dan, Jin, Guorui, Prabhakaran, Molamma P., Ramakrishna, Seeram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 59
container_title Biotechnology journal
container_volume 8
creator Kai, Dan
Jin, Guorui
Prabhakaran, Molamma P.
Ramakrishna, Seeram
description Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds. Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.
doi_str_mv 10.1002/biot.201200249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434012924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273119193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</originalsourceid><addsrcrecordid>eNqFkM9PwjAYhhujEUWvHs2OXob9xbYehSBgCHiAmHhpuu6bVseG7aby31sEiTcu_dr0ed98eRC6IrhDMKa3qanqDsWE-gcXR-iMJBEOY0b48e4exVHSQufOvWHMuwzzU9SijDDhjzO0GBSga1u5VVMGbl3Wr1AbHagyC0pVN1YVfpZVblKwLsgrG1h4gRKsqs0nBEvIjDYl_AZcDctAQ1G4C3SSq8LB5W620eJ-MO-PwslsOO7fTULNEyrCJM1ZRjKgaUQ4FpkgkCngOOZKqyiKOeZ5qnL_kcQ0yTVRiY_4KE2JAC1YG91se1e2-mjA1XJp3GYDVULVOEk4496NoPwwSr00IohgHu1sUe29OAu5XFmzVHYtCZYb63JjXe6t-8D1rrtJvZE9_qfZA2ILfJkC1gfqZG88m_8vD7dZ4_1-77PKvssoZnFXPk2Hcjrv0YfR47OM2Q8GmJ6N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273119193</pqid></control><display><type>article</type><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</creator><creatorcontrib>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</creatorcontrib><description>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds. Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.201200249</identifier><identifier>PMID: 23139231</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Cell infiltration ; Electrospinning ; Humans ; Nanofibers ; Regenerative Medicine - methods ; Stem cell differentiation ; Stem Cells - cytology ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Biotechnology journal, 2013-01, Vol.8 (1), p.59-72</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</citedby><cites>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.201200249$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.201200249$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23139231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Dan</creatorcontrib><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><title>Biotechnology journal</title><addtitle>Biotechnology Journal</addtitle><description>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds. Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</description><subject>Animals</subject><subject>Cell infiltration</subject><subject>Electrospinning</subject><subject>Humans</subject><subject>Nanofibers</subject><subject>Regenerative Medicine - methods</subject><subject>Stem cell differentiation</subject><subject>Stem Cells - cytology</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9PwjAYhhujEUWvHs2OXob9xbYehSBgCHiAmHhpuu6bVseG7aby31sEiTcu_dr0ed98eRC6IrhDMKa3qanqDsWE-gcXR-iMJBEOY0b48e4exVHSQufOvWHMuwzzU9SijDDhjzO0GBSga1u5VVMGbl3Wr1AbHagyC0pVN1YVfpZVblKwLsgrG1h4gRKsqs0nBEvIjDYl_AZcDctAQ1G4C3SSq8LB5W620eJ-MO-PwslsOO7fTULNEyrCJM1ZRjKgaUQ4FpkgkCngOOZKqyiKOeZ5qnL_kcQ0yTVRiY_4KE2JAC1YG91se1e2-mjA1XJp3GYDVULVOEk4496NoPwwSr00IohgHu1sUe29OAu5XFmzVHYtCZYb63JjXe6t-8D1rrtJvZE9_qfZA2ILfJkC1gfqZG88m_8vD7dZ4_1-77PKvssoZnFXPk2Hcjrv0YfR47OM2Q8GmJ6N</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kai, Dan</creator><creator>Jin, Guorui</creator><creator>Prabhakaran, Molamma P.</creator><creator>Ramakrishna, Seeram</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201301</creationdate><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><author>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell infiltration</topic><topic>Electrospinning</topic><topic>Humans</topic><topic>Nanofibers</topic><topic>Regenerative Medicine - methods</topic><topic>Stem cell differentiation</topic><topic>Stem Cells - cytology</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Dan</creatorcontrib><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Dan</au><au>Jin, Guorui</au><au>Prabhakaran, Molamma P.</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnology Journal</addtitle><date>2013-01</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds. Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23139231</pmid><doi>10.1002/biot.201200249</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1860-6768
ispartof Biotechnology journal, 2013-01, Vol.8 (1), p.59-72
issn 1860-6768
1860-7314
language eng
recordid cdi_proquest_miscellaneous_1434012924
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Cell infiltration
Electrospinning
Humans
Nanofibers
Regenerative Medicine - methods
Stem cell differentiation
Stem Cells - cytology
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds
title Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20synthetic%20and%20natural%20nanofibers%20for%20regenerative%20medicine%20and%20stem%20cells&rft.jtitle=Biotechnology%20journal&rft.au=Kai,%20Dan&rft.date=2013-01&rft.volume=8&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.201200249&rft_dat=%3Cproquest_cross%3E1273119193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273119193&rft_id=info:pmid/23139231&rfr_iscdi=true