Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells
Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular respo...
Gespeichert in:
Veröffentlicht in: | Biotechnology journal 2013-01, Vol.8 (1), p.59-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 59 |
container_title | Biotechnology journal |
container_volume | 8 |
creator | Kai, Dan Jin, Guorui Prabhakaran, Molamma P. Ramakrishna, Seeram |
description | Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.
Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds. |
doi_str_mv | 10.1002/biot.201200249 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1434012924</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273119193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</originalsourceid><addsrcrecordid>eNqFkM9PwjAYhhujEUWvHs2OXob9xbYehSBgCHiAmHhpuu6bVseG7aby31sEiTcu_dr0ed98eRC6IrhDMKa3qanqDsWE-gcXR-iMJBEOY0b48e4exVHSQufOvWHMuwzzU9SijDDhjzO0GBSga1u5VVMGbl3Wr1AbHagyC0pVN1YVfpZVblKwLsgrG1h4gRKsqs0nBEvIjDYl_AZcDctAQ1G4C3SSq8LB5W620eJ-MO-PwslsOO7fTULNEyrCJM1ZRjKgaUQ4FpkgkCngOOZKqyiKOeZ5qnL_kcQ0yTVRiY_4KE2JAC1YG91se1e2-mjA1XJp3GYDVULVOEk4496NoPwwSr00IohgHu1sUe29OAu5XFmzVHYtCZYb63JjXe6t-8D1rrtJvZE9_qfZA2ILfJkC1gfqZG88m_8vD7dZ4_1-77PKvssoZnFXPk2Hcjrv0YfR47OM2Q8GmJ6N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273119193</pqid></control><display><type>article</type><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</creator><creatorcontrib>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</creatorcontrib><description>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.
Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</description><identifier>ISSN: 1860-6768</identifier><identifier>EISSN: 1860-7314</identifier><identifier>DOI: 10.1002/biot.201200249</identifier><identifier>PMID: 23139231</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Animals ; Cell infiltration ; Electrospinning ; Humans ; Nanofibers ; Regenerative Medicine - methods ; Stem cell differentiation ; Stem Cells - cytology ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Biotechnology journal, 2013-01, Vol.8 (1), p.59-72</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</citedby><cites>FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbiot.201200249$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbiot.201200249$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23139231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kai, Dan</creatorcontrib><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><title>Biotechnology journal</title><addtitle>Biotechnology Journal</addtitle><description>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.
Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</description><subject>Animals</subject><subject>Cell infiltration</subject><subject>Electrospinning</subject><subject>Humans</subject><subject>Nanofibers</subject><subject>Regenerative Medicine - methods</subject><subject>Stem cell differentiation</subject><subject>Stem Cells - cytology</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1860-6768</issn><issn>1860-7314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM9PwjAYhhujEUWvHs2OXob9xbYehSBgCHiAmHhpuu6bVseG7aby31sEiTcu_dr0ed98eRC6IrhDMKa3qanqDsWE-gcXR-iMJBEOY0b48e4exVHSQufOvWHMuwzzU9SijDDhjzO0GBSga1u5VVMGbl3Wr1AbHagyC0pVN1YVfpZVblKwLsgrG1h4gRKsqs0nBEvIjDYl_AZcDctAQ1G4C3SSq8LB5W620eJ-MO-PwslsOO7fTULNEyrCJM1ZRjKgaUQ4FpkgkCngOOZKqyiKOeZ5qnL_kcQ0yTVRiY_4KE2JAC1YG91se1e2-mjA1XJp3GYDVULVOEk4496NoPwwSr00IohgHu1sUe29OAu5XFmzVHYtCZYb63JjXe6t-8D1rrtJvZE9_qfZA2ILfJkC1gfqZG88m_8vD7dZ4_1-77PKvssoZnFXPk2Hcjrv0YfR47OM2Q8GmJ6N</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Kai, Dan</creator><creator>Jin, Guorui</creator><creator>Prabhakaran, Molamma P.</creator><creator>Ramakrishna, Seeram</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201301</creationdate><title>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</title><author>Kai, Dan ; Jin, Guorui ; Prabhakaran, Molamma P. ; Ramakrishna, Seeram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4829-8bf3d1de2b61409d91edae4074aca667404fbaf9d98728fc1a88bf4822b19ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell infiltration</topic><topic>Electrospinning</topic><topic>Humans</topic><topic>Nanofibers</topic><topic>Regenerative Medicine - methods</topic><topic>Stem cell differentiation</topic><topic>Stem Cells - cytology</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kai, Dan</creatorcontrib><creatorcontrib>Jin, Guorui</creatorcontrib><creatorcontrib>Prabhakaran, Molamma P.</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kai, Dan</au><au>Jin, Guorui</au><au>Prabhakaran, Molamma P.</au><au>Ramakrishna, Seeram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells</atitle><jtitle>Biotechnology journal</jtitle><addtitle>Biotechnology Journal</addtitle><date>2013-01</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>1860-6768</issn><eissn>1860-7314</eissn><abstract>Nanofibers are attractive substrates for tissue regeneration applications because they structurally mimic the native extracellular matrix. Electrospinning has been recognized as one of the most efficient techniques to fabricate polymer nanofibers. Recent research has demonstrated that cellular responses, for example attachment, proliferation and differentiation, can be modulated by tuning nanofiber properties. In combination with other processing techniques, such as particulate leaching or three‐dimensional printing, nanofibrous scaffolds incorporating macroporous networks could be developed to enhance infiltration of cells. Three dimensional nanofiber‐based constructs offer an opportunity to achieve advanced functional tissue regeneration. This review explores the advantageous effects of nanofibers on cell behaviors compared to traditional scaffolds.
Electrospun nanofibers can influence cellular behavior. Nanofibers are attractive for use in tissue regeneration because they structurally mimic the native extracelluar matrix. Electrospinning has become one of the most efficient techniques for the fabrication of polymer nanofibers. Cellular activities, such as attachment, proliferation and differentiation, can be modulated by tuning the nanofiber properties including chemical composition, fiber morphology, diameter and alignment. This review explores the advantages of nanofibers compared to traditional scaffolds.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23139231</pmid><doi>10.1002/biot.201200249</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-6768 |
ispartof | Biotechnology journal, 2013-01, Vol.8 (1), p.59-72 |
issn | 1860-6768 1860-7314 |
language | eng |
recordid | cdi_proquest_miscellaneous_1434012924 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Cell infiltration Electrospinning Humans Nanofibers Regenerative Medicine - methods Stem cell differentiation Stem Cells - cytology Tissue engineering Tissue Engineering - methods Tissue Scaffolds |
title | Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20synthetic%20and%20natural%20nanofibers%20for%20regenerative%20medicine%20and%20stem%20cells&rft.jtitle=Biotechnology%20journal&rft.au=Kai,%20Dan&rft.date=2013-01&rft.volume=8&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=1860-6768&rft.eissn=1860-7314&rft_id=info:doi/10.1002/biot.201200249&rft_dat=%3Cproquest_cross%3E1273119193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273119193&rft_id=info:pmid/23139231&rfr_iscdi=true |