Conjugated linoleic acids alter body composition differently according to physiological age in Moulard ducks

Conjugated linoleic acids (CLA) have been shown to have remarkable yet inconsistent metabolic effects in mice, rats, hamsters, chickens, cattle, and humans. In particular, effects on lipogenesis vary with tissue, physiological state, and species. In this study we tested the hypothesis that CLA would...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2013-10, Vol.92 (10), p.2697-2704
Hauptverfasser: Fesler, J A, Peterson, D G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conjugated linoleic acids (CLA) have been shown to have remarkable yet inconsistent metabolic effects in mice, rats, hamsters, chickens, cattle, and humans. In particular, effects on lipogenesis vary with tissue, physiological state, and species. In this study we tested the hypothesis that CLA would differentially affect ducks of the same genetic background but of differing age. Growing (7 wk) and maintenance (11 wk) Moulard ducks were grouped by age and fed a standard diet supplemented with 5% soybean oil (control) or 5% CLA isomer mixture. Birds were slaughtered after 3 or 6 wk for assessment of body composition including adipose, liver, viscera, and empty carcass weight. Serum nonesterified fatty acid (NEFA) and glucose concentrations were evaluated, and gene targets were cloned from the duck to use in quantifying mRNA abundance for genes involved in lipogenesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and lipid oxidation (carnitine palmitoyl transferase-1, CPT-1) in liver tissue from maintenance birds. After 3 wk, the growing CLA group exhibited a 24% decrease in dissectible adipose tissue (P < 0.05), whereas maintenance birds showed no significant diet effect. After 6 wk, the growing CLA group exhibited a 20% increase in liver mass compared with the control (P < 0.05), but no diet effect on adipose tissue. Maintenance birds receiving dietary CLA had a 42% decrease in adipose tissue mass after 6 wk; increased serum NEFA, ACC, and CPT-1 mRNA after 3 and 6 wk (P < 0.05); and increased FAS mRNA after 3 wk of treatment (P < 0.05). These data indicate that CLA have potent effects on lipid metabolism in ducks, but these effects differ depending on physiological age.
ISSN:0032-5791
DOI:10.3382/ps.2012-02779