Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials

Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-09, Vol.5 (17), p.8790-8795
Hauptverfasser: Liu, Xiayuan, Shi, Shaojun, Xiong, Qinqin, Li, Lu, Zhang, Yijun, Tang, Hong, Gu, Changdong, Wang, Xiuli, Tu, Jiangping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8795
container_issue 17
container_start_page 8790
container_title ACS applied materials & interfaces
container_volume 5
creator Liu, Xiayuan
Shi, Shaojun
Xiong, Qinqin
Li, Lu
Zhang, Yijun
Tang, Hong
Gu, Changdong
Wang, Xiuli
Tu, Jiangping
description Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electrode displays better pseudocapacitive behaviors in 2 M KOH, which exhibits high areal specific capacitances of 1.55 F cm–2 at 2 mA cm–2 and 1.16 F cm–2 at 40 mA cm–2 before activation as well as excellent cycling stability. The specific capacitance can achieve a maximum of 2.20 F cm–2 at a current density of 5 mA cm–2, which can still retain 2.17 F cm–2 (98.6% retention) after 4000 cycles. The enhanced pseudocapacitive performances are mainly attributed to its unique core/shell structure, which provides fast ion and electron transfer, a large number of active sites, and good strain accommodation.
doi_str_mv 10.1021/am402681m
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1432076121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1432076121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a281t-79d274cf055c8585993b8040bdf31ac8a06cb398a2de7ae57e9fbc3f54d36c993</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRbK0u_AOSjeAmdj6Tyc4S1ArVCtX18DKZ2NSkE2eSRf-9I61d3QfvcLkchK4JvieYkim0HNNEkvYEjUnGeSypoKfHm_MRuvB-g3HCKBbnaERZxlKa0jEy89o4cHpda2iitzq3dMkfDhnl1pnpam2a8IKtrRr4NtHMOdj5CHw0r7_W8btxlXUtbLWJVkNnnIYOdN1bF71Cb1wNjb9EZ1UIc3XICfp8evzI5_Fi-fySzxYxUEn6OM1KmnJdYSG0FFJkGSsk5rgoK0ZAS8CJLlgmgZYmBSNSk1WFZpXgJUt0oCfobt_bOfszGN-rtvY6zIetsYNXhAcBaUIoCejNAR2K1pSqc3ULbqf-1QTgdg-A9mpjB7cNyxXB6k-5OipnvzXIcBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1432076121</pqid></control><display><type>article</type><title>Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials</title><source>ACS Publications</source><creator>Liu, Xiayuan ; Shi, Shaojun ; Xiong, Qinqin ; Li, Lu ; Zhang, Yijun ; Tang, Hong ; Gu, Changdong ; Wang, Xiuli ; Tu, Jiangping</creator><creatorcontrib>Liu, Xiayuan ; Shi, Shaojun ; Xiong, Qinqin ; Li, Lu ; Zhang, Yijun ; Tang, Hong ; Gu, Changdong ; Wang, Xiuli ; Tu, Jiangping</creatorcontrib><description>Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electrode displays better pseudocapacitive behaviors in 2 M KOH, which exhibits high areal specific capacitances of 1.55 F cm–2 at 2 mA cm–2 and 1.16 F cm–2 at 40 mA cm–2 before activation as well as excellent cycling stability. The specific capacitance can achieve a maximum of 2.20 F cm–2 at a current density of 5 mA cm–2, which can still retain 2.17 F cm–2 (98.6% retention) after 4000 cycles. The enhanced pseudocapacitive performances are mainly attributed to its unique core/shell structure, which provides fast ion and electron transfer, a large number of active sites, and good strain accommodation.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am402681m</identifier><identifier>PMID: 23937272</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2013-09, Vol.5 (17), p.8790-8795</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a281t-79d274cf055c8585993b8040bdf31ac8a06cb398a2de7ae57e9fbc3f54d36c993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am402681m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am402681m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23937272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiayuan</creatorcontrib><creatorcontrib>Shi, Shaojun</creatorcontrib><creatorcontrib>Xiong, Qinqin</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Gu, Changdong</creatorcontrib><creatorcontrib>Wang, Xiuli</creatorcontrib><creatorcontrib>Tu, Jiangping</creatorcontrib><title>Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electrode displays better pseudocapacitive behaviors in 2 M KOH, which exhibits high areal specific capacitances of 1.55 F cm–2 at 2 mA cm–2 and 1.16 F cm–2 at 40 mA cm–2 before activation as well as excellent cycling stability. The specific capacitance can achieve a maximum of 2.20 F cm–2 at a current density of 5 mA cm–2, which can still retain 2.17 F cm–2 (98.6% retention) after 4000 cycles. The enhanced pseudocapacitive performances are mainly attributed to its unique core/shell structure, which provides fast ion and electron transfer, a large number of active sites, and good strain accommodation.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRbK0u_AOSjeAmdj6Tyc4S1ArVCtX18DKZ2NSkE2eSRf-9I61d3QfvcLkchK4JvieYkim0HNNEkvYEjUnGeSypoKfHm_MRuvB-g3HCKBbnaERZxlKa0jEy89o4cHpda2iitzq3dMkfDhnl1pnpam2a8IKtrRr4NtHMOdj5CHw0r7_W8btxlXUtbLWJVkNnnIYOdN1bF71Cb1wNjb9EZ1UIc3XICfp8evzI5_Fi-fySzxYxUEn6OM1KmnJdYSG0FFJkGSsk5rgoK0ZAS8CJLlgmgZYmBSNSk1WFZpXgJUt0oCfobt_bOfszGN-rtvY6zIetsYNXhAcBaUIoCejNAR2K1pSqc3ULbqf-1QTgdg-A9mpjB7cNyxXB6k-5OipnvzXIcBE</recordid><startdate>20130911</startdate><enddate>20130911</enddate><creator>Liu, Xiayuan</creator><creator>Shi, Shaojun</creator><creator>Xiong, Qinqin</creator><creator>Li, Lu</creator><creator>Zhang, Yijun</creator><creator>Tang, Hong</creator><creator>Gu, Changdong</creator><creator>Wang, Xiuli</creator><creator>Tu, Jiangping</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130911</creationdate><title>Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials</title><author>Liu, Xiayuan ; Shi, Shaojun ; Xiong, Qinqin ; Li, Lu ; Zhang, Yijun ; Tang, Hong ; Gu, Changdong ; Wang, Xiuli ; Tu, Jiangping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a281t-79d274cf055c8585993b8040bdf31ac8a06cb398a2de7ae57e9fbc3f54d36c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiayuan</creatorcontrib><creatorcontrib>Shi, Shaojun</creatorcontrib><creatorcontrib>Xiong, Qinqin</creatorcontrib><creatorcontrib>Li, Lu</creatorcontrib><creatorcontrib>Zhang, Yijun</creatorcontrib><creatorcontrib>Tang, Hong</creatorcontrib><creatorcontrib>Gu, Changdong</creatorcontrib><creatorcontrib>Wang, Xiuli</creatorcontrib><creatorcontrib>Tu, Jiangping</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiayuan</au><au>Shi, Shaojun</au><au>Xiong, Qinqin</au><au>Li, Lu</au><au>Zhang, Yijun</au><au>Tang, Hong</au><au>Gu, Changdong</au><au>Wang, Xiuli</au><au>Tu, Jiangping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-09-11</date><risdate>2013</risdate><volume>5</volume><issue>17</issue><spage>8790</spage><epage>8795</epage><pages>8790-8795</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays on nickel foam for high-performance supercapacitors are fabricated by a two-step solution-based method which involves in hydrothermal process and chemical bath deposition. Compared with the bare NiCo2O4 nanoflake arrays, the core/shell electrode displays better pseudocapacitive behaviors in 2 M KOH, which exhibits high areal specific capacitances of 1.55 F cm–2 at 2 mA cm–2 and 1.16 F cm–2 at 40 mA cm–2 before activation as well as excellent cycling stability. The specific capacitance can achieve a maximum of 2.20 F cm–2 at a current density of 5 mA cm–2, which can still retain 2.17 F cm–2 (98.6% retention) after 4000 cycles. The enhanced pseudocapacitive performances are mainly attributed to its unique core/shell structure, which provides fast ion and electron transfer, a large number of active sites, and good strain accommodation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23937272</pmid><doi>10.1021/am402681m</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2013-09, Vol.5 (17), p.8790-8795
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1432076121
source ACS Publications
title Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20NiCo2O4@NiCo2O4%20Core/Shell%20Nanoflake%20Arrays%20as%20High-Performance%20Supercapacitor%20Materials&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Xiayuan&rft.date=2013-09-11&rft.volume=5&rft.issue=17&rft.spage=8790&rft.epage=8795&rft.pages=8790-8795&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am402681m&rft_dat=%3Cproquest_pubme%3E1432076121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1432076121&rft_id=info:pmid/23937272&rfr_iscdi=true