Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes
Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of...
Gespeichert in:
Veröffentlicht in: | Journal of molecular evolution 2013-08, Vol.77 (1-2), p.3-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1-2 |
container_start_page | 3 |
container_title | Journal of molecular evolution |
container_volume | 77 |
creator | Soto, Gabriela Fox, Ana Romina Ayub, Nicolás Daniel |
description | Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the
MsDMI3
kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient
Sinorhizobium meliloti
B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes. |
doi_str_mv | 10.1007/s00239-013-9578-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1431294332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073668451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</originalsourceid><addsrcrecordid>eNp1kFtLwzAYhoMobk5_gDcS8Mabag5ND5c6pg6GgszrkLZfZufa1CQF_femVEUEb5JAnvf9kgehU0ouKSHplSOE8TwilEe5SLMo20NTGnMWDcs-moZrFrEsjifoyLktITQVOT9Ek5DiPBHxFD0t3rudsXW7wf4F8LL14ezqEq_qpvYOG40fam_NBlrlAK-tap0Gi7U1Db5RpQdbK-wNXvSvyn4YD-4YHWi1c3Dytc_Q8-1iPb-PVo93y_n1Kip5ynxUUWAsKVJGRJ6ILNWKMp5BIlSuEqAphyIlqqpAFLEuuCi1YJxWRVKQhBZc8xm6GHs7a956cF42tStht1MtmN7JIIGyPOacBfT8D7o1vW3D6waKkySLcxEoOlKlNc5Z0LKzdRN-JSmRg3A5CpdBuByEyyxkzr6a-6KB6ifxbTgAbARcN1gG-2v0v62fE1OKng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433068495</pqid></control><display><type>article</type><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</creator><creatorcontrib>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</creatorcontrib><description>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the
MsDMI3
kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient
Sinorhizobium meliloti
B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-013-9578-8</identifier><identifier>PMID: 23933654</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alfalfa ; Animal Genetics and Genomics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biomedical and Life Sciences ; Cell Biology ; Enzymes ; Eukaryota - classification ; Eukaryota - genetics ; Eukaryota - metabolism ; Eukaryotes ; Evolutionary Biology ; Gene Expression Regulation, Plant ; Letter to the Editor ; Life Sciences ; Medicago sativa - genetics ; Medicago sativa - metabolism ; Microbiology ; Nitrogen fixation ; Nitrogen Fixation - genetics ; Nitrogenase - genetics ; Nitrogenase - metabolism ; Phylogeny ; Plant Genetics and Genomics ; Plant Root Nodulation - genetics ; Plant Sciences ; Plant structures ; Sinorhizobium meliloti - genetics ; Sinorhizobium meliloti - metabolism ; Symbiosis</subject><ispartof>Journal of molecular evolution, 2013-08, Vol.77 (1-2), p.3-7</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</citedby><cites>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00239-013-9578-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00239-013-9578-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23933654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>Fox, Ana Romina</creatorcontrib><creatorcontrib>Ayub, Nicolás Daniel</creatorcontrib><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the
MsDMI3
kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient
Sinorhizobium meliloti
B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</description><subject>Alfalfa</subject><subject>Animal Genetics and Genomics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Enzymes</subject><subject>Eukaryota - classification</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - metabolism</subject><subject>Eukaryotes</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Letter to the Editor</subject><subject>Life Sciences</subject><subject>Medicago sativa - genetics</subject><subject>Medicago sativa - metabolism</subject><subject>Microbiology</subject><subject>Nitrogen fixation</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogenase - genetics</subject><subject>Nitrogenase - metabolism</subject><subject>Phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Root Nodulation - genetics</subject><subject>Plant Sciences</subject><subject>Plant structures</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Sinorhizobium meliloti - metabolism</subject><subject>Symbiosis</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFtLwzAYhoMobk5_gDcS8Mabag5ND5c6pg6GgszrkLZfZufa1CQF_femVEUEb5JAnvf9kgehU0ouKSHplSOE8TwilEe5SLMo20NTGnMWDcs-moZrFrEsjifoyLktITQVOT9Ek5DiPBHxFD0t3rudsXW7wf4F8LL14ezqEq_qpvYOG40fam_NBlrlAK-tap0Gi7U1Db5RpQdbK-wNXvSvyn4YD-4YHWi1c3Dytc_Q8-1iPb-PVo93y_n1Kip5ynxUUWAsKVJGRJ6ILNWKMp5BIlSuEqAphyIlqqpAFLEuuCi1YJxWRVKQhBZc8xm6GHs7a956cF42tStht1MtmN7JIIGyPOacBfT8D7o1vW3D6waKkySLcxEoOlKlNc5Z0LKzdRN-JSmRg3A5CpdBuByEyyxkzr6a-6KB6ifxbTgAbARcN1gG-2v0v62fE1OKng</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Soto, Gabriela</creator><creator>Fox, Ana Romina</creator><creator>Ayub, Nicolás Daniel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><author>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alfalfa</topic><topic>Animal Genetics and Genomics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Enzymes</topic><topic>Eukaryota - classification</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - metabolism</topic><topic>Eukaryotes</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Letter to the Editor</topic><topic>Life Sciences</topic><topic>Medicago sativa - genetics</topic><topic>Medicago sativa - metabolism</topic><topic>Microbiology</topic><topic>Nitrogen fixation</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogenase - genetics</topic><topic>Nitrogenase - metabolism</topic><topic>Phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Root Nodulation - genetics</topic><topic>Plant Sciences</topic><topic>Plant structures</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Sinorhizobium meliloti - metabolism</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>Fox, Ana Romina</creatorcontrib><creatorcontrib>Ayub, Nicolás Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto, Gabriela</au><au>Fox, Ana Romina</au><au>Ayub, Nicolás Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>77</volume><issue>1-2</issue><spage>3</spage><epage>7</epage><pages>3-7</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the
MsDMI3
kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient
Sinorhizobium meliloti
B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23933654</pmid><doi>10.1007/s00239-013-9578-8</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2844 |
ispartof | Journal of molecular evolution, 2013-08, Vol.77 (1-2), p.3-7 |
issn | 0022-2844 1432-1432 |
language | eng |
recordid | cdi_proquest_miscellaneous_1431294332 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Alfalfa Animal Genetics and Genomics Bacteria Bacteria - classification Bacteria - genetics Bacteria - metabolism Biomedical and Life Sciences Cell Biology Enzymes Eukaryota - classification Eukaryota - genetics Eukaryota - metabolism Eukaryotes Evolutionary Biology Gene Expression Regulation, Plant Letter to the Editor Life Sciences Medicago sativa - genetics Medicago sativa - metabolism Microbiology Nitrogen fixation Nitrogen Fixation - genetics Nitrogenase - genetics Nitrogenase - metabolism Phylogeny Plant Genetics and Genomics Plant Root Nodulation - genetics Plant Sciences Plant structures Sinorhizobium meliloti - genetics Sinorhizobium meliloti - metabolism Symbiosis |
title | Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Intrinsic%20Limits%20of%20Nitrogenase%20Transfer%20from%20Bacteria%20to%20Eukaryotes&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Soto,%20Gabriela&rft.date=2013-08-01&rft.volume=77&rft.issue=1-2&rft.spage=3&rft.epage=7&rft.pages=3-7&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-013-9578-8&rft_dat=%3Cproquest_cross%3E3073668451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433068495&rft_id=info:pmid/23933654&rfr_iscdi=true |