Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes

Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular evolution 2013-08, Vol.77 (1-2), p.3-7
Hauptverfasser: Soto, Gabriela, Fox, Ana Romina, Ayub, Nicolás Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1-2
container_start_page 3
container_title Journal of molecular evolution
container_volume 77
creator Soto, Gabriela
Fox, Ana Romina
Ayub, Nicolás Daniel
description Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.
doi_str_mv 10.1007/s00239-013-9578-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1431294332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3073668451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</originalsourceid><addsrcrecordid>eNp1kFtLwzAYhoMobk5_gDcS8Mabag5ND5c6pg6GgszrkLZfZufa1CQF_femVEUEb5JAnvf9kgehU0ouKSHplSOE8TwilEe5SLMo20NTGnMWDcs-moZrFrEsjifoyLktITQVOT9Ek5DiPBHxFD0t3rudsXW7wf4F8LL14ezqEq_qpvYOG40fam_NBlrlAK-tap0Gi7U1Db5RpQdbK-wNXvSvyn4YD-4YHWi1c3Dytc_Q8-1iPb-PVo93y_n1Kip5ynxUUWAsKVJGRJ6ILNWKMp5BIlSuEqAphyIlqqpAFLEuuCi1YJxWRVKQhBZc8xm6GHs7a956cF42tStht1MtmN7JIIGyPOacBfT8D7o1vW3D6waKkySLcxEoOlKlNc5Z0LKzdRN-JSmRg3A5CpdBuByEyyxkzr6a-6KB6ifxbTgAbARcN1gG-2v0v62fE1OKng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433068495</pqid></control><display><type>article</type><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</creator><creatorcontrib>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</creatorcontrib><description>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/s00239-013-9578-8</identifier><identifier>PMID: 23933654</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alfalfa ; Animal Genetics and Genomics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Biomedical and Life Sciences ; Cell Biology ; Enzymes ; Eukaryota - classification ; Eukaryota - genetics ; Eukaryota - metabolism ; Eukaryotes ; Evolutionary Biology ; Gene Expression Regulation, Plant ; Letter to the Editor ; Life Sciences ; Medicago sativa - genetics ; Medicago sativa - metabolism ; Microbiology ; Nitrogen fixation ; Nitrogen Fixation - genetics ; Nitrogenase - genetics ; Nitrogenase - metabolism ; Phylogeny ; Plant Genetics and Genomics ; Plant Root Nodulation - genetics ; Plant Sciences ; Plant structures ; Sinorhizobium meliloti - genetics ; Sinorhizobium meliloti - metabolism ; Symbiosis</subject><ispartof>Journal of molecular evolution, 2013-08, Vol.77 (1-2), p.3-7</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</citedby><cites>FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00239-013-9578-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00239-013-9578-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23933654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>Fox, Ana Romina</creatorcontrib><creatorcontrib>Ayub, Nicolás Daniel</creatorcontrib><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><addtitle>J Mol Evol</addtitle><description>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</description><subject>Alfalfa</subject><subject>Animal Genetics and Genomics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Enzymes</subject><subject>Eukaryota - classification</subject><subject>Eukaryota - genetics</subject><subject>Eukaryota - metabolism</subject><subject>Eukaryotes</subject><subject>Evolutionary Biology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Letter to the Editor</subject><subject>Life Sciences</subject><subject>Medicago sativa - genetics</subject><subject>Medicago sativa - metabolism</subject><subject>Microbiology</subject><subject>Nitrogen fixation</subject><subject>Nitrogen Fixation - genetics</subject><subject>Nitrogenase - genetics</subject><subject>Nitrogenase - metabolism</subject><subject>Phylogeny</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Root Nodulation - genetics</subject><subject>Plant Sciences</subject><subject>Plant structures</subject><subject>Sinorhizobium meliloti - genetics</subject><subject>Sinorhizobium meliloti - metabolism</subject><subject>Symbiosis</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFtLwzAYhoMobk5_gDcS8Mabag5ND5c6pg6GgszrkLZfZufa1CQF_femVEUEb5JAnvf9kgehU0ouKSHplSOE8TwilEe5SLMo20NTGnMWDcs-moZrFrEsjifoyLktITQVOT9Ek5DiPBHxFD0t3rudsXW7wf4F8LL14ezqEq_qpvYOG40fam_NBlrlAK-tap0Gi7U1Db5RpQdbK-wNXvSvyn4YD-4YHWi1c3Dytc_Q8-1iPb-PVo93y_n1Kip5ynxUUWAsKVJGRJ6ILNWKMp5BIlSuEqAphyIlqqpAFLEuuCi1YJxWRVKQhBZc8xm6GHs7a956cF42tStht1MtmN7JIIGyPOacBfT8D7o1vW3D6waKkySLcxEoOlKlNc5Z0LKzdRN-JSmRg3A5CpdBuByEyyxkzr6a-6KB6ifxbTgAbARcN1gG-2v0v62fE1OKng</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Soto, Gabriela</creator><creator>Fox, Ana Romina</creator><creator>Ayub, Nicolás Daniel</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</title><author>Soto, Gabriela ; Fox, Ana Romina ; Ayub, Nicolás Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d1e226b720596587fa1238e65a9a6e173eb70adde5b4fb35cf5231db6b061b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alfalfa</topic><topic>Animal Genetics and Genomics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Enzymes</topic><topic>Eukaryota - classification</topic><topic>Eukaryota - genetics</topic><topic>Eukaryota - metabolism</topic><topic>Eukaryotes</topic><topic>Evolutionary Biology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Letter to the Editor</topic><topic>Life Sciences</topic><topic>Medicago sativa - genetics</topic><topic>Medicago sativa - metabolism</topic><topic>Microbiology</topic><topic>Nitrogen fixation</topic><topic>Nitrogen Fixation - genetics</topic><topic>Nitrogenase - genetics</topic><topic>Nitrogenase - metabolism</topic><topic>Phylogeny</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Root Nodulation - genetics</topic><topic>Plant Sciences</topic><topic>Plant structures</topic><topic>Sinorhizobium meliloti - genetics</topic><topic>Sinorhizobium meliloti - metabolism</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto, Gabriela</creatorcontrib><creatorcontrib>Fox, Ana Romina</creatorcontrib><creatorcontrib>Ayub, Nicolás Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto, Gabriela</au><au>Fox, Ana Romina</au><au>Ayub, Nicolás Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes</atitle><jtitle>Journal of molecular evolution</jtitle><stitle>J Mol Evol</stitle><addtitle>J Mol Evol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>77</volume><issue>1-2</issue><spage>3</spage><epage>7</epage><pages>3-7</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><abstract>Biological nitrogen fixation is widespread among the Eubacteria and Archae domains but completely absent in eukaryotes. The lack of lateral transfer of nitrogen-fixation genes from prokaryotes to eukaryotes has been partially attributed to the physiological requirements necessary for the function of the nitrogenase complex. However, symbiotic bacterial nitrogenase activity is protected by the nodule, a plant structure whose organogenesis can be trigged in the absence of bacteria. To explore the intrinsic potentiality of this plant organ, we generated rhizobium-independent nodules in alfalfa by overexpressing the MsDMI3 kinase lacking the autoinhibitory domain. These transgenic nodules showed similar levels of leghemoglobin, free oxygen, ATP, and NADPH to those of efficient Sinorhizobium meliloti B399-infected nodules, suggesting that the rhizobium-independent nodules can provide an optimal microenvironment for nitrogenase activity. Finally, we discuss the intrinsic evolutionary constraints on transfer of nitrogen-fixation genes between bacteria and eukaryotes.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23933654</pmid><doi>10.1007/s00239-013-9578-8</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2844
ispartof Journal of molecular evolution, 2013-08, Vol.77 (1-2), p.3-7
issn 0022-2844
1432-1432
language eng
recordid cdi_proquest_miscellaneous_1431294332
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Alfalfa
Animal Genetics and Genomics
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - metabolism
Biomedical and Life Sciences
Cell Biology
Enzymes
Eukaryota - classification
Eukaryota - genetics
Eukaryota - metabolism
Eukaryotes
Evolutionary Biology
Gene Expression Regulation, Plant
Letter to the Editor
Life Sciences
Medicago sativa - genetics
Medicago sativa - metabolism
Microbiology
Nitrogen fixation
Nitrogen Fixation - genetics
Nitrogenase - genetics
Nitrogenase - metabolism
Phylogeny
Plant Genetics and Genomics
Plant Root Nodulation - genetics
Plant Sciences
Plant structures
Sinorhizobium meliloti - genetics
Sinorhizobium meliloti - metabolism
Symbiosis
title Exploring the Intrinsic Limits of Nitrogenase Transfer from Bacteria to Eukaryotes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Intrinsic%20Limits%20of%20Nitrogenase%20Transfer%20from%20Bacteria%20to%20Eukaryotes&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=Soto,%20Gabriela&rft.date=2013-08-01&rft.volume=77&rft.issue=1-2&rft.spage=3&rft.epage=7&rft.pages=3-7&rft.issn=0022-2844&rft.eissn=1432-1432&rft_id=info:doi/10.1007/s00239-013-9578-8&rft_dat=%3Cproquest_cross%3E3073668451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433068495&rft_id=info:pmid/23933654&rfr_iscdi=true