Covariate-adjusted confidence interval for the intraclass correlation coefficient
Abstract A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). I...
Gespeichert in:
Veröffentlicht in: | Contemporary clinical trials 2013-09, Vol.36 (1), p.244-253 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253 |
---|---|
container_issue | 1 |
container_start_page | 244 |
container_title | Contemporary clinical trials |
container_volume | 36 |
creator | Shoukri, Mohamed M Donner, Allan El-Dali, Abdelmoneim |
description | Abstract A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members. |
doi_str_mv | 10.1016/j.cct.2013.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1431293796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1551714413001146</els_id><sourcerecordid>1431293796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-55508c52669a00450dc96865f1ffc1ae00e47abc7b3ac2555c326362221d40343</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMo7rr6A7zIHL10W5WvnkYQZPALFhbZ9Rwy6Qqm7emsSXpg_73pndWDhz2lCE-9RT3F2GuEFgH1u7F1rrQcULTQtQDiCTtHpfqGg4Cn9zU2HUp5xl7kPFZAK62eszMuth12Up-z77t4tCnYQo0dxiUXGjYuzj4MNDvahLlQOtpp42PalJ_3H8m6yeZcsZRosiXEudbkfXCB5vKSPfN2yvTq4b1gPz5_utl9bS6vvnzbfbxsnFRYGqUUbJ3iWvcWQCoYXK-3Wnn03qElAJKd3btuL6zjlXaCa6E55zhIEFJcsLen3NsUfy-UizmE7Gia7ExxyQalQN6LrtcVxRPqUsw5kTe3KRxsujMIZjVpRlNNmtWkgc5UUbXnzUP8sj_Q8K_jr7oKvD8BVJc8Bkomr_s7GkKiGjbE8Gj8h_-63RTm4Oz0i-4oj3FJc7Vn0GRuwFyvp1wviQIAsY7_A9F2mEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1431293796</pqid></control><display><type>article</type><title>Covariate-adjusted confidence interval for the intraclass correlation coefficient</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Shoukri, Mohamed M ; Donner, Allan ; El-Dali, Abdelmoneim</creator><creatorcontrib>Shoukri, Mohamed M ; Donner, Allan ; El-Dali, Abdelmoneim</creatorcontrib><description>Abstract A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members.</description><identifier>ISSN: 1551-7144</identifier><identifier>EISSN: 1559-2030</identifier><identifier>DOI: 10.1016/j.cct.2013.07.003</identifier><identifier>PMID: 23871746</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bias ; Cardiovascular ; Confidence Intervals ; Generalized Estimating Equations ; Hematology, Oncology and Palliative Medicine ; Humans ; Intra-class correlation ; Models, Statistical ; Monte Carlo Method ; Monte-Carlo simulations ; Multi-level models ; Percentile bootstrap confidence intervals ; Research Design ; Sample Size ; Statistics as Topic - methods</subject><ispartof>Contemporary clinical trials, 2013-09, Vol.36 (1), p.244-253</ispartof><rights>The Authors</rights><rights>2013 The Authors</rights><rights>2013. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-55508c52669a00450dc96865f1ffc1ae00e47abc7b3ac2555c326362221d40343</citedby><cites>FETCH-LOGICAL-c451t-55508c52669a00450dc96865f1ffc1ae00e47abc7b3ac2555c326362221d40343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cct.2013.07.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23871746$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shoukri, Mohamed M</creatorcontrib><creatorcontrib>Donner, Allan</creatorcontrib><creatorcontrib>El-Dali, Abdelmoneim</creatorcontrib><title>Covariate-adjusted confidence interval for the intraclass correlation coefficient</title><title>Contemporary clinical trials</title><addtitle>Contemp Clin Trials</addtitle><description>Abstract A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members.</description><subject>Bias</subject><subject>Cardiovascular</subject><subject>Confidence Intervals</subject><subject>Generalized Estimating Equations</subject><subject>Hematology, Oncology and Palliative Medicine</subject><subject>Humans</subject><subject>Intra-class correlation</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Monte-Carlo simulations</subject><subject>Multi-level models</subject><subject>Percentile bootstrap confidence intervals</subject><subject>Research Design</subject><subject>Sample Size</subject><subject>Statistics as Topic - methods</subject><issn>1551-7144</issn><issn>1559-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2LFDEQhoMo7rr6A7zIHL10W5WvnkYQZPALFhbZ9Rwy6Qqm7emsSXpg_73pndWDhz2lCE-9RT3F2GuEFgH1u7F1rrQcULTQtQDiCTtHpfqGg4Cn9zU2HUp5xl7kPFZAK62eszMuth12Up-z77t4tCnYQo0dxiUXGjYuzj4MNDvahLlQOtpp42PalJ_3H8m6yeZcsZRosiXEudbkfXCB5vKSPfN2yvTq4b1gPz5_utl9bS6vvnzbfbxsnFRYGqUUbJ3iWvcWQCoYXK-3Wnn03qElAJKd3btuL6zjlXaCa6E55zhIEFJcsLen3NsUfy-UizmE7Gia7ExxyQalQN6LrtcVxRPqUsw5kTe3KRxsujMIZjVpRlNNmtWkgc5UUbXnzUP8sj_Q8K_jr7oKvD8BVJc8Bkomr_s7GkKiGjbE8Gj8h_-63RTm4Oz0i-4oj3FJc7Vn0GRuwFyvp1wviQIAsY7_A9F2mEA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Shoukri, Mohamed M</creator><creator>Donner, Allan</creator><creator>El-Dali, Abdelmoneim</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Covariate-adjusted confidence interval for the intraclass correlation coefficient</title><author>Shoukri, Mohamed M ; Donner, Allan ; El-Dali, Abdelmoneim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-55508c52669a00450dc96865f1ffc1ae00e47abc7b3ac2555c326362221d40343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bias</topic><topic>Cardiovascular</topic><topic>Confidence Intervals</topic><topic>Generalized Estimating Equations</topic><topic>Hematology, Oncology and Palliative Medicine</topic><topic>Humans</topic><topic>Intra-class correlation</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Monte-Carlo simulations</topic><topic>Multi-level models</topic><topic>Percentile bootstrap confidence intervals</topic><topic>Research Design</topic><topic>Sample Size</topic><topic>Statistics as Topic - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoukri, Mohamed M</creatorcontrib><creatorcontrib>Donner, Allan</creatorcontrib><creatorcontrib>El-Dali, Abdelmoneim</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contemporary clinical trials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoukri, Mohamed M</au><au>Donner, Allan</au><au>El-Dali, Abdelmoneim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariate-adjusted confidence interval for the intraclass correlation coefficient</atitle><jtitle>Contemporary clinical trials</jtitle><addtitle>Contemp Clin Trials</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>36</volume><issue>1</issue><spage>244</spage><epage>253</epage><pages>244-253</pages><issn>1551-7144</issn><eissn>1559-2030</eissn><abstract>Abstract A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23871746</pmid><doi>10.1016/j.cct.2013.07.003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-7144 |
ispartof | Contemporary clinical trials, 2013-09, Vol.36 (1), p.244-253 |
issn | 1551-7144 1559-2030 |
language | eng |
recordid | cdi_proquest_miscellaneous_1431293796 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Bias Cardiovascular Confidence Intervals Generalized Estimating Equations Hematology, Oncology and Palliative Medicine Humans Intra-class correlation Models, Statistical Monte Carlo Method Monte-Carlo simulations Multi-level models Percentile bootstrap confidence intervals Research Design Sample Size Statistics as Topic - methods |
title | Covariate-adjusted confidence interval for the intraclass correlation coefficient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A25%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariate-adjusted%20confidence%20interval%20for%20the%20intraclass%20correlation%20coefficient&rft.jtitle=Contemporary%20clinical%20trials&rft.au=Shoukri,%20Mohamed%20M&rft.date=2013-09-01&rft.volume=36&rft.issue=1&rft.spage=244&rft.epage=253&rft.pages=244-253&rft.issn=1551-7144&rft.eissn=1559-2030&rft_id=info:doi/10.1016/j.cct.2013.07.003&rft_dat=%3Cproquest_cross%3E1431293796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1431293796&rft_id=info:pmid/23871746&rft_els_id=S1551714413001146&rfr_iscdi=true |