The Genetic Basis of White Tigers

The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2013-06, Vol.23 (11), p.1031-1035
Hauptverfasser: Xu, Xiao, Dong, Gui-Xin, Hu, Xue-Song, Miao, Lin, Zhang, Xue-Li, Zhang, De-Lu, Yang, Han-Dong, Zhang, Tian-You, Zou, Zheng-Ting, Zhang, Ting-Ting, Zhuang, Yan, Bhak, Jong, Cho, Yun Sung, Dai, Wen-Tao, Jiang, Tai-Jiao, Xie, Can, Li, Ruiqiang, Luo, Shu-Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1035
container_issue 11
container_start_page 1031
container_title Current biology
container_volume 23
creator Xu, Xiao
Dong, Gui-Xin
Hu, Xue-Song
Miao, Lin
Zhang, Xue-Li
Zhang, De-Lu
Yang, Han-Dong
Zhang, Tian-You
Zou, Zheng-Ting
Zhang, Ting-Ting
Zhuang, Yan
Bhak, Jong
Cho, Yun Sung
Dai, Wen-Tao
Jiang, Tai-Jiao
Xie, Can
Li, Ruiqiang
Luo, Shu-Jin
description The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild. •Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger
doi_str_mv 10.1016/j.cub.2013.04.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430851436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982213004958</els_id><sourcerecordid>1365990277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</originalsourceid><addsrcrecordid>eNqFkE1PGzEURa2qiATKD-gGhh2bmT5_zdjqClALSJFYNFGXlmM_J46SDNgTpP77OkrKkm7u25x79XQI-UqhoUDbb6vG7eYNA8obEA1I8YmMqep0DULIz2QMuoVaK8ZG5CznFQBlSrenZMR4B53gdEyup0usHnCLQ3TVnc0xV32ofi_jgNU0LjDlL-Qk2HXGi-M9J7OfP6b3j_Xk-eHp_nZSOyH5UGs-Z5Izp6gA6UGr4BUPKlipLfVaMxU69MFLH7iVliFFuQ9QyG2nOT8nN4fdl9S_7jAPZhOzw_XabrHfZUMFByVLtv9HeSu1BtZ1BaUH1KU-54TBvKS4semPoWD2Es3KFIlmL9GAMEVi6Vwe53fzDfr3xj9rBbg6AMH2xi5SzGb2qyxIAOC6_FmI7wcCi7G3iMlkF3Hr0MeEbjC-jx888BeFsYfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365990277</pqid></control><display><type>article</type><title>The Genetic Basis of White Tigers</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</creator><creatorcontrib>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</creatorcontrib><description>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild. •Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2013.04.054</identifier><identifier>PMID: 23707431</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; amino acids ; Animals ; captive animals ; chickens ; color ; Female ; fur ; genes ; genetic disorders ; Genome-Wide Association Study ; Hair - metabolism ; horses ; humans ; loci ; Male ; melanogenesis ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular Sequence Data ; Mutation ; Panthera tigris tigris ; parents ; pedigree ; phenotype ; Pigmentation ; Polymorphism, Genetic ; sequence analysis ; Tigers - genetics ; Tigers - metabolism</subject><ispartof>Current biology, 2013-06, Vol.23 (11), p.1031-1035</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</citedby><cites>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2013.04.054$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23707431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dong, Gui-Xin</creatorcontrib><creatorcontrib>Hu, Xue-Song</creatorcontrib><creatorcontrib>Miao, Lin</creatorcontrib><creatorcontrib>Zhang, Xue-Li</creatorcontrib><creatorcontrib>Zhang, De-Lu</creatorcontrib><creatorcontrib>Yang, Han-Dong</creatorcontrib><creatorcontrib>Zhang, Tian-You</creatorcontrib><creatorcontrib>Zou, Zheng-Ting</creatorcontrib><creatorcontrib>Zhang, Ting-Ting</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Bhak, Jong</creatorcontrib><creatorcontrib>Cho, Yun Sung</creatorcontrib><creatorcontrib>Dai, Wen-Tao</creatorcontrib><creatorcontrib>Jiang, Tai-Jiao</creatorcontrib><creatorcontrib>Xie, Can</creatorcontrib><creatorcontrib>Li, Ruiqiang</creatorcontrib><creatorcontrib>Luo, Shu-Jin</creatorcontrib><title>The Genetic Basis of White Tigers</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild. •Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>amino acids</subject><subject>Animals</subject><subject>captive animals</subject><subject>chickens</subject><subject>color</subject><subject>Female</subject><subject>fur</subject><subject>genes</subject><subject>genetic disorders</subject><subject>Genome-Wide Association Study</subject><subject>Hair - metabolism</subject><subject>horses</subject><subject>humans</subject><subject>loci</subject><subject>Male</subject><subject>melanogenesis</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Panthera tigris tigris</subject><subject>parents</subject><subject>pedigree</subject><subject>phenotype</subject><subject>Pigmentation</subject><subject>Polymorphism, Genetic</subject><subject>sequence analysis</subject><subject>Tigers - genetics</subject><subject>Tigers - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PGzEURa2qiATKD-gGhh2bmT5_zdjqClALSJFYNFGXlmM_J46SDNgTpP77OkrKkm7u25x79XQI-UqhoUDbb6vG7eYNA8obEA1I8YmMqep0DULIz2QMuoVaK8ZG5CznFQBlSrenZMR4B53gdEyup0usHnCLQ3TVnc0xV32ofi_jgNU0LjDlL-Qk2HXGi-M9J7OfP6b3j_Xk-eHp_nZSOyH5UGs-Z5Izp6gA6UGr4BUPKlipLfVaMxU69MFLH7iVliFFuQ9QyG2nOT8nN4fdl9S_7jAPZhOzw_XabrHfZUMFByVLtv9HeSu1BtZ1BaUH1KU-54TBvKS4semPoWD2Es3KFIlmL9GAMEVi6Vwe53fzDfr3xj9rBbg6AMH2xi5SzGb2qyxIAOC6_FmI7wcCi7G3iMlkF3Hr0MeEbjC-jx888BeFsYfs</recordid><startdate>20130603</startdate><enddate>20130603</enddate><creator>Xu, Xiao</creator><creator>Dong, Gui-Xin</creator><creator>Hu, Xue-Song</creator><creator>Miao, Lin</creator><creator>Zhang, Xue-Li</creator><creator>Zhang, De-Lu</creator><creator>Yang, Han-Dong</creator><creator>Zhang, Tian-You</creator><creator>Zou, Zheng-Ting</creator><creator>Zhang, Ting-Ting</creator><creator>Zhuang, Yan</creator><creator>Bhak, Jong</creator><creator>Cho, Yun Sung</creator><creator>Dai, Wen-Tao</creator><creator>Jiang, Tai-Jiao</creator><creator>Xie, Can</creator><creator>Li, Ruiqiang</creator><creator>Luo, Shu-Jin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130603</creationdate><title>The Genetic Basis of White Tigers</title><author>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>amino acids</topic><topic>Animals</topic><topic>captive animals</topic><topic>chickens</topic><topic>color</topic><topic>Female</topic><topic>fur</topic><topic>genes</topic><topic>genetic disorders</topic><topic>Genome-Wide Association Study</topic><topic>Hair - metabolism</topic><topic>horses</topic><topic>humans</topic><topic>loci</topic><topic>Male</topic><topic>melanogenesis</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Panthera tigris tigris</topic><topic>parents</topic><topic>pedigree</topic><topic>phenotype</topic><topic>Pigmentation</topic><topic>Polymorphism, Genetic</topic><topic>sequence analysis</topic><topic>Tigers - genetics</topic><topic>Tigers - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dong, Gui-Xin</creatorcontrib><creatorcontrib>Hu, Xue-Song</creatorcontrib><creatorcontrib>Miao, Lin</creatorcontrib><creatorcontrib>Zhang, Xue-Li</creatorcontrib><creatorcontrib>Zhang, De-Lu</creatorcontrib><creatorcontrib>Yang, Han-Dong</creatorcontrib><creatorcontrib>Zhang, Tian-You</creatorcontrib><creatorcontrib>Zou, Zheng-Ting</creatorcontrib><creatorcontrib>Zhang, Ting-Ting</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Bhak, Jong</creatorcontrib><creatorcontrib>Cho, Yun Sung</creatorcontrib><creatorcontrib>Dai, Wen-Tao</creatorcontrib><creatorcontrib>Jiang, Tai-Jiao</creatorcontrib><creatorcontrib>Xie, Can</creatorcontrib><creatorcontrib>Li, Ruiqiang</creatorcontrib><creatorcontrib>Luo, Shu-Jin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiao</au><au>Dong, Gui-Xin</au><au>Hu, Xue-Song</au><au>Miao, Lin</au><au>Zhang, Xue-Li</au><au>Zhang, De-Lu</au><au>Yang, Han-Dong</au><au>Zhang, Tian-You</au><au>Zou, Zheng-Ting</au><au>Zhang, Ting-Ting</au><au>Zhuang, Yan</au><au>Bhak, Jong</au><au>Cho, Yun Sung</au><au>Dai, Wen-Tao</au><au>Jiang, Tai-Jiao</au><au>Xie, Can</au><au>Li, Ruiqiang</au><au>Luo, Shu-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Genetic Basis of White Tigers</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2013-06-03</date><risdate>2013</risdate><volume>23</volume><issue>11</issue><spage>1031</spage><epage>1035</epage><pages>1031-1035</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild. •Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23707431</pmid><doi>10.1016/j.cub.2013.04.054</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2013-06, Vol.23 (11), p.1031-1035
issn 0960-9822
1879-0445
language eng
recordid cdi_proquest_miscellaneous_1430851436
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Amino Acid Sequence
Amino Acid Substitution
amino acids
Animals
captive animals
chickens
color
Female
fur
genes
genetic disorders
Genome-Wide Association Study
Hair - metabolism
horses
humans
loci
Male
melanogenesis
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Molecular Sequence Data
Mutation
Panthera tigris tigris
parents
pedigree
phenotype
Pigmentation
Polymorphism, Genetic
sequence analysis
Tigers - genetics
Tigers - metabolism
title The Genetic Basis of White Tigers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Genetic%20Basis%20of%20White%20Tigers&rft.jtitle=Current%20biology&rft.au=Xu,%20Xiao&rft.date=2013-06-03&rft.volume=23&rft.issue=11&rft.spage=1031&rft.epage=1035&rft.pages=1031-1035&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2013.04.054&rft_dat=%3Cproquest_cross%3E1365990277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365990277&rft_id=info:pmid/23707431&rft_els_id=S0960982213004958&rfr_iscdi=true