The Genetic Basis of White Tigers
The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and...
Gespeichert in:
Veröffentlicht in: | Current biology 2013-06, Vol.23 (11), p.1031-1035 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1035 |
---|---|
container_issue | 11 |
container_start_page | 1031 |
container_title | Current biology |
container_volume | 23 |
creator | Xu, Xiao Dong, Gui-Xin Hu, Xue-Song Miao, Lin Zhang, Xue-Li Zhang, De-Lu Yang, Han-Dong Zhang, Tian-You Zou, Zheng-Ting Zhang, Ting-Ting Zhuang, Yan Bhak, Jong Cho, Yun Sung Dai, Wen-Tao Jiang, Tai-Jiao Xie, Can Li, Ruiqiang Luo, Shu-Jin |
description | The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild.
•Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger |
doi_str_mv | 10.1016/j.cub.2013.04.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430851436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982213004958</els_id><sourcerecordid>1365990277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</originalsourceid><addsrcrecordid>eNqFkE1PGzEURa2qiATKD-gGhh2bmT5_zdjqClALSJFYNFGXlmM_J46SDNgTpP77OkrKkm7u25x79XQI-UqhoUDbb6vG7eYNA8obEA1I8YmMqep0DULIz2QMuoVaK8ZG5CznFQBlSrenZMR4B53gdEyup0usHnCLQ3TVnc0xV32ofi_jgNU0LjDlL-Qk2HXGi-M9J7OfP6b3j_Xk-eHp_nZSOyH5UGs-Z5Izp6gA6UGr4BUPKlipLfVaMxU69MFLH7iVliFFuQ9QyG2nOT8nN4fdl9S_7jAPZhOzw_XabrHfZUMFByVLtv9HeSu1BtZ1BaUH1KU-54TBvKS4semPoWD2Es3KFIlmL9GAMEVi6Vwe53fzDfr3xj9rBbg6AMH2xi5SzGb2qyxIAOC6_FmI7wcCi7G3iMlkF3Hr0MeEbjC-jx888BeFsYfs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365990277</pqid></control><display><type>article</type><title>The Genetic Basis of White Tigers</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</creator><creatorcontrib>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</creatorcontrib><description>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild.
•Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2013.04.054</identifier><identifier>PMID: 23707431</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; amino acids ; Animals ; captive animals ; chickens ; color ; Female ; fur ; genes ; genetic disorders ; Genome-Wide Association Study ; Hair - metabolism ; horses ; humans ; loci ; Male ; melanogenesis ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular Sequence Data ; Mutation ; Panthera tigris tigris ; parents ; pedigree ; phenotype ; Pigmentation ; Polymorphism, Genetic ; sequence analysis ; Tigers - genetics ; Tigers - metabolism</subject><ispartof>Current biology, 2013-06, Vol.23 (11), p.1031-1035</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</citedby><cites>FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cub.2013.04.054$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23707431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dong, Gui-Xin</creatorcontrib><creatorcontrib>Hu, Xue-Song</creatorcontrib><creatorcontrib>Miao, Lin</creatorcontrib><creatorcontrib>Zhang, Xue-Li</creatorcontrib><creatorcontrib>Zhang, De-Lu</creatorcontrib><creatorcontrib>Yang, Han-Dong</creatorcontrib><creatorcontrib>Zhang, Tian-You</creatorcontrib><creatorcontrib>Zou, Zheng-Ting</creatorcontrib><creatorcontrib>Zhang, Ting-Ting</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Bhak, Jong</creatorcontrib><creatorcontrib>Cho, Yun Sung</creatorcontrib><creatorcontrib>Dai, Wen-Tao</creatorcontrib><creatorcontrib>Jiang, Tai-Jiao</creatorcontrib><creatorcontrib>Xie, Can</creatorcontrib><creatorcontrib>Li, Ruiqiang</creatorcontrib><creatorcontrib>Luo, Shu-Jin</creatorcontrib><title>The Genetic Basis of White Tigers</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild.
•Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>amino acids</subject><subject>Animals</subject><subject>captive animals</subject><subject>chickens</subject><subject>color</subject><subject>Female</subject><subject>fur</subject><subject>genes</subject><subject>genetic disorders</subject><subject>Genome-Wide Association Study</subject><subject>Hair - metabolism</subject><subject>horses</subject><subject>humans</subject><subject>loci</subject><subject>Male</subject><subject>melanogenesis</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Panthera tigris tigris</subject><subject>parents</subject><subject>pedigree</subject><subject>phenotype</subject><subject>Pigmentation</subject><subject>Polymorphism, Genetic</subject><subject>sequence analysis</subject><subject>Tigers - genetics</subject><subject>Tigers - metabolism</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1PGzEURa2qiATKD-gGhh2bmT5_zdjqClALSJFYNFGXlmM_J46SDNgTpP77OkrKkm7u25x79XQI-UqhoUDbb6vG7eYNA8obEA1I8YmMqep0DULIz2QMuoVaK8ZG5CznFQBlSrenZMR4B53gdEyup0usHnCLQ3TVnc0xV32ofi_jgNU0LjDlL-Qk2HXGi-M9J7OfP6b3j_Xk-eHp_nZSOyH5UGs-Z5Izp6gA6UGr4BUPKlipLfVaMxU69MFLH7iVliFFuQ9QyG2nOT8nN4fdl9S_7jAPZhOzw_XabrHfZUMFByVLtv9HeSu1BtZ1BaUH1KU-54TBvKS4semPoWD2Es3KFIlmL9GAMEVi6Vwe53fzDfr3xj9rBbg6AMH2xi5SzGb2qyxIAOC6_FmI7wcCi7G3iMlkF3Hr0MeEbjC-jx888BeFsYfs</recordid><startdate>20130603</startdate><enddate>20130603</enddate><creator>Xu, Xiao</creator><creator>Dong, Gui-Xin</creator><creator>Hu, Xue-Song</creator><creator>Miao, Lin</creator><creator>Zhang, Xue-Li</creator><creator>Zhang, De-Lu</creator><creator>Yang, Han-Dong</creator><creator>Zhang, Tian-You</creator><creator>Zou, Zheng-Ting</creator><creator>Zhang, Ting-Ting</creator><creator>Zhuang, Yan</creator><creator>Bhak, Jong</creator><creator>Cho, Yun Sung</creator><creator>Dai, Wen-Tao</creator><creator>Jiang, Tai-Jiao</creator><creator>Xie, Can</creator><creator>Li, Ruiqiang</creator><creator>Luo, Shu-Jin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130603</creationdate><title>The Genetic Basis of White Tigers</title><author>Xu, Xiao ; Dong, Gui-Xin ; Hu, Xue-Song ; Miao, Lin ; Zhang, Xue-Li ; Zhang, De-Lu ; Yang, Han-Dong ; Zhang, Tian-You ; Zou, Zheng-Ting ; Zhang, Ting-Ting ; Zhuang, Yan ; Bhak, Jong ; Cho, Yun Sung ; Dai, Wen-Tao ; Jiang, Tai-Jiao ; Xie, Can ; Li, Ruiqiang ; Luo, Shu-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-93b2532c81405d098fd83f8fa59a1d9928f7edfd5df3a5a2e1e52e1e08e3a7933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>amino acids</topic><topic>Animals</topic><topic>captive animals</topic><topic>chickens</topic><topic>color</topic><topic>Female</topic><topic>fur</topic><topic>genes</topic><topic>genetic disorders</topic><topic>Genome-Wide Association Study</topic><topic>Hair - metabolism</topic><topic>horses</topic><topic>humans</topic><topic>loci</topic><topic>Male</topic><topic>melanogenesis</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Panthera tigris tigris</topic><topic>parents</topic><topic>pedigree</topic><topic>phenotype</topic><topic>Pigmentation</topic><topic>Polymorphism, Genetic</topic><topic>sequence analysis</topic><topic>Tigers - genetics</topic><topic>Tigers - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiao</creatorcontrib><creatorcontrib>Dong, Gui-Xin</creatorcontrib><creatorcontrib>Hu, Xue-Song</creatorcontrib><creatorcontrib>Miao, Lin</creatorcontrib><creatorcontrib>Zhang, Xue-Li</creatorcontrib><creatorcontrib>Zhang, De-Lu</creatorcontrib><creatorcontrib>Yang, Han-Dong</creatorcontrib><creatorcontrib>Zhang, Tian-You</creatorcontrib><creatorcontrib>Zou, Zheng-Ting</creatorcontrib><creatorcontrib>Zhang, Ting-Ting</creatorcontrib><creatorcontrib>Zhuang, Yan</creatorcontrib><creatorcontrib>Bhak, Jong</creatorcontrib><creatorcontrib>Cho, Yun Sung</creatorcontrib><creatorcontrib>Dai, Wen-Tao</creatorcontrib><creatorcontrib>Jiang, Tai-Jiao</creatorcontrib><creatorcontrib>Xie, Can</creatorcontrib><creatorcontrib>Li, Ruiqiang</creatorcontrib><creatorcontrib>Luo, Shu-Jin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiao</au><au>Dong, Gui-Xin</au><au>Hu, Xue-Song</au><au>Miao, Lin</au><au>Zhang, Xue-Li</au><au>Zhang, De-Lu</au><au>Yang, Han-Dong</au><au>Zhang, Tian-You</au><au>Zou, Zheng-Ting</au><au>Zhang, Ting-Ting</au><au>Zhuang, Yan</au><au>Bhak, Jong</au><au>Cho, Yun Sung</au><au>Dai, Wen-Tao</au><au>Jiang, Tai-Jiao</au><au>Xie, Can</au><au>Li, Ruiqiang</au><au>Luo, Shu-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Genetic Basis of White Tigers</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2013-06-03</date><risdate>2013</risdate><volume>23</volume><issue>11</issue><spage>1031</spage><epage>1035</epage><pages>1031-1035</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>The white tiger, an elusive Bengal tiger (Panthera tigris tigris) variant with white fur and dark stripes, has fascinated humans for centuries ever since its discovery in the jungles of India [1]. Many white tigers in captivity are inbred in order to maintain this autosomal recessive trait [2–5] and consequently suffer some health problems, leading to the controversial speculation that the white tiger mutation is perhaps a genetic defect [6]. However, the genetic basis of this phenotype remains unknown. Here, we conducted genome-wide association mapping with restriction-site-associated DNA sequencing (RAD-seq) in a pedigree of 16 captive tigers segregating at the putative white locus, followed by whole-genome sequencing (WGS) of the three parents. Validation in 130 unrelated tigers identified the causative mutation to be an amino acid change (A477V) in the transporter protein SLC45A2. Three-dimensional homology modeling suggests that the substitution may partially block the transporter channel cavity and thus affect melanogenesis. We demonstrate the feasibility of combining RAD-seq and WGS to rapidly map exotic variants in nonmodel organisms. Our results identify the basis of the longstanding white tiger mystery as the same gene underlying color variation in human, horse, and chicken and highlight its significance as part of the species’ natural polymorphism that is viable in the wild.
•Whole-genome sequencing enables mapping of the white tiger mutation•A single amino acid change in transporter SLC45A2 causes the white tiger phenotype•The white tiger mutation primarily affects the red/yellow pheomelanin pathway•The white tiger variant is viable in the wild and a natural polymorphism of the tiger</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23707431</pmid><doi>10.1016/j.cub.2013.04.054</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2013-06, Vol.23 (11), p.1031-1035 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_proquest_miscellaneous_1430851436 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Amino Acid Sequence Amino Acid Substitution amino acids Animals captive animals chickens color Female fur genes genetic disorders Genome-Wide Association Study Hair - metabolism horses humans loci Male melanogenesis Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Molecular Sequence Data Mutation Panthera tigris tigris parents pedigree phenotype Pigmentation Polymorphism, Genetic sequence analysis Tigers - genetics Tigers - metabolism |
title | The Genetic Basis of White Tigers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Genetic%20Basis%20of%20White%20Tigers&rft.jtitle=Current%20biology&rft.au=Xu,%20Xiao&rft.date=2013-06-03&rft.volume=23&rft.issue=11&rft.spage=1031&rft.epage=1035&rft.pages=1031-1035&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2013.04.054&rft_dat=%3Cproquest_cross%3E1365990277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365990277&rft_id=info:pmid/23707431&rft_els_id=S0960982213004958&rfr_iscdi=true |