A review on statistical models for identifying climate contributions to crop yields
Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, mana...
Gespeichert in:
Veröffentlicht in: | Journal of geographical sciences 2013-06, Vol.23 (3), p.567-576 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 3 |
container_start_page | 567 |
container_title | Journal of geographical sciences |
container_volume | 23 |
creator | Shi, Wenjiao Tao, Fulu Zhang, Zhao |
description | Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally. |
doi_str_mv | 10.1007/s11442-013-1029-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430849006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45286687</cqvip_id><sourcerecordid>2918626079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxZeQQBy3H6A3lVLIZZvRn5VWxxCSthDIIQnkJmSt1pVZS45GbvC3r4xNCj30MhrQe483v6b5ROEbBVBXSKkQrAXKWwpMt_ykmdFe0lZ3sj-tO4BuJVcv580F4gqAayHZrHm8Jtn_Dv6NpEiw2BKwBGcnsk6Dn5CMKZMw-FjCuAtxSdwU1rZ44lIsOSy2JaSIpCTictqQXfDTgB-as9FO6D8e33nzfHf7dPOjvX_4_vPm-r51QvSlzq4Xo-TMcy-YGDrWWzcuoBusch1oKjvlBiks68F3VjGhhB4GqZQeuVxoPm8uD7mbnF63HotZB3R-mmz0aYuGCg690ACySr_8I12lbY61nWG6cmIS1D6QHlT1GMTsR7PJ9dy8MxTMHrM5YDYVs9ljNrx6vh6TLVZuY7bRBXw3MiVrby2qjh10WL_i0ue_Df4X_vlY6FeKy9fqew8WFZeUveJ_AGBulz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918626079</pqid></control><display><type>article</type><title>A review on statistical models for identifying climate contributions to crop yields</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</creator><creatorcontrib>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</creatorcontrib><description>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</description><identifier>ISSN: 1009-637X</identifier><identifier>EISSN: 1861-9568</identifier><identifier>DOI: 10.1007/s11442-013-1029-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Agricultural production ; Applied climatology ; Bgi / Prodig ; Climate change ; Climatology ; Crop yield ; Cultivars ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Nature Conservation ; Physical Geography ; Remote Sensing/Photogrammetry ; Statistical methods ; Statistical models ; 作物产量 ; 响应灵敏度 ; 回归方程 ; 时间序列模型 ; 气候变化 ; 空间尺度 ; 统计模型 ; 评论</subject><ispartof>Journal of geographical sciences, 2013-06, Vol.23 (3), p.567-576</ispartof><rights>Science Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2013</rights><rights>Science Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</citedby><cites>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85906X/85906X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11442-013-1029-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918626079?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27624794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Wenjiao</creatorcontrib><creatorcontrib>Tao, Fulu</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><title>A review on statistical models for identifying climate contributions to crop yields</title><title>Journal of geographical sciences</title><addtitle>J. Geogr. Sci</addtitle><addtitle>Journal of Geographical Sciences</addtitle><description>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</description><subject>Agricultural production</subject><subject>Applied climatology</subject><subject>Bgi / Prodig</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Nature Conservation</subject><subject>Physical Geography</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>作物产量</subject><subject>响应灵敏度</subject><subject>回归方程</subject><subject>时间序列模型</subject><subject>气候变化</subject><subject>空间尺度</subject><subject>统计模型</subject><subject>评论</subject><issn>1009-637X</issn><issn>1861-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9rGzEQxZeQQBy3H6A3lVLIZZvRn5VWxxCSthDIIQnkJmSt1pVZS45GbvC3r4xNCj30MhrQe483v6b5ROEbBVBXSKkQrAXKWwpMt_ykmdFe0lZ3sj-tO4BuJVcv580F4gqAayHZrHm8Jtn_Dv6NpEiw2BKwBGcnsk6Dn5CMKZMw-FjCuAtxSdwU1rZ44lIsOSy2JaSIpCTictqQXfDTgB-as9FO6D8e33nzfHf7dPOjvX_4_vPm-r51QvSlzq4Xo-TMcy-YGDrWWzcuoBusch1oKjvlBiks68F3VjGhhB4GqZQeuVxoPm8uD7mbnF63HotZB3R-mmz0aYuGCg690ACySr_8I12lbY61nWG6cmIS1D6QHlT1GMTsR7PJ9dy8MxTMHrM5YDYVs9ljNrx6vh6TLVZuY7bRBXw3MiVrby2qjh10WL_i0ue_Df4X_vlY6FeKy9fqew8WFZeUveJ_AGBulz8</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Shi, Wenjiao</creator><creator>Tao, Fulu</creator><creator>Zhang, Zhao</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20130601</creationdate><title>A review on statistical models for identifying climate contributions to crop yields</title><author>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural production</topic><topic>Applied climatology</topic><topic>Bgi / Prodig</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Nature Conservation</topic><topic>Physical Geography</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>作物产量</topic><topic>响应灵敏度</topic><topic>回归方程</topic><topic>时间序列模型</topic><topic>气候变化</topic><topic>空间尺度</topic><topic>统计模型</topic><topic>评论</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wenjiao</creatorcontrib><creatorcontrib>Tao, Fulu</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of geographical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wenjiao</au><au>Tao, Fulu</au><au>Zhang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on statistical models for identifying climate contributions to crop yields</atitle><jtitle>Journal of geographical sciences</jtitle><stitle>J. Geogr. Sci</stitle><addtitle>Journal of Geographical Sciences</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>1009-637X</issn><eissn>1861-9568</eissn><abstract>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11442-013-1029-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-637X |
ispartof | Journal of geographical sciences, 2013-06, Vol.23 (3), p.567-576 |
issn | 1009-637X 1861-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1430849006 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Agricultural production Applied climatology Bgi / Prodig Climate change Climatology Crop yield Cultivars Earth and Environmental Science Geographical Information Systems/Cartography Geography Nature Conservation Physical Geography Remote Sensing/Photogrammetry Statistical methods Statistical models 作物产量 响应灵敏度 回归方程 时间序列模型 气候变化 空间尺度 统计模型 评论 |
title | A review on statistical models for identifying climate contributions to crop yields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20statistical%20models%20for%20identifying%20climate%20contributions%20to%20crop%20yields&rft.jtitle=Journal%20of%20geographical%20sciences&rft.au=Shi,%20Wenjiao&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=1009-637X&rft.eissn=1861-9568&rft_id=info:doi/10.1007/s11442-013-1029-3&rft_dat=%3Cproquest_cross%3E2918626079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918626079&rft_id=info:pmid/&rft_cqvip_id=45286687&rfr_iscdi=true |