A review on statistical models for identifying climate contributions to crop yields

Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, mana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geographical sciences 2013-06, Vol.23 (3), p.567-576
Hauptverfasser: Shi, Wenjiao, Tao, Fulu, Zhang, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 3
container_start_page 567
container_title Journal of geographical sciences
container_volume 23
creator Shi, Wenjiao
Tao, Fulu
Zhang, Zhao
description Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.
doi_str_mv 10.1007/s11442-013-1029-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430849006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45286687</cqvip_id><sourcerecordid>2918626079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxZeQQBy3H6A3lVLIZZvRn5VWxxCSthDIIQnkJmSt1pVZS45GbvC3r4xNCj30MhrQe483v6b5ROEbBVBXSKkQrAXKWwpMt_ykmdFe0lZ3sj-tO4BuJVcv580F4gqAayHZrHm8Jtn_Dv6NpEiw2BKwBGcnsk6Dn5CMKZMw-FjCuAtxSdwU1rZ44lIsOSy2JaSIpCTictqQXfDTgB-as9FO6D8e33nzfHf7dPOjvX_4_vPm-r51QvSlzq4Xo-TMcy-YGDrWWzcuoBusch1oKjvlBiks68F3VjGhhB4GqZQeuVxoPm8uD7mbnF63HotZB3R-mmz0aYuGCg690ACySr_8I12lbY61nWG6cmIS1D6QHlT1GMTsR7PJ9dy8MxTMHrM5YDYVs9ljNrx6vh6TLVZuY7bRBXw3MiVrby2qjh10WL_i0ue_Df4X_vlY6FeKy9fqew8WFZeUveJ_AGBulz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918626079</pqid></control><display><type>article</type><title>A review on statistical models for identifying climate contributions to crop yields</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</creator><creatorcontrib>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</creatorcontrib><description>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</description><identifier>ISSN: 1009-637X</identifier><identifier>EISSN: 1861-9568</identifier><identifier>DOI: 10.1007/s11442-013-1029-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Agricultural production ; Applied climatology ; Bgi / Prodig ; Climate change ; Climatology ; Crop yield ; Cultivars ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Nature Conservation ; Physical Geography ; Remote Sensing/Photogrammetry ; Statistical methods ; Statistical models ; 作物产量 ; 响应灵敏度 ; 回归方程 ; 时间序列模型 ; 气候变化 ; 空间尺度 ; 统计模型 ; 评论</subject><ispartof>Journal of geographical sciences, 2013-06, Vol.23 (3), p.567-576</ispartof><rights>Science Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Tous droits réservés © Prodig - Bibliographie Géographique Internationale (BGI), 2013</rights><rights>Science Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</citedby><cites>FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85906X/85906X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11442-013-1029-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918626079?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,33745,41488,42557,43805,51319,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27624794$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Wenjiao</creatorcontrib><creatorcontrib>Tao, Fulu</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><title>A review on statistical models for identifying climate contributions to crop yields</title><title>Journal of geographical sciences</title><addtitle>J. Geogr. Sci</addtitle><addtitle>Journal of Geographical Sciences</addtitle><description>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</description><subject>Agricultural production</subject><subject>Applied climatology</subject><subject>Bgi / Prodig</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Crop yield</subject><subject>Cultivars</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Nature Conservation</subject><subject>Physical Geography</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>作物产量</subject><subject>响应灵敏度</subject><subject>回归方程</subject><subject>时间序列模型</subject><subject>气候变化</subject><subject>空间尺度</subject><subject>统计模型</subject><subject>评论</subject><issn>1009-637X</issn><issn>1861-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9rGzEQxZeQQBy3H6A3lVLIZZvRn5VWxxCSthDIIQnkJmSt1pVZS45GbvC3r4xNCj30MhrQe483v6b5ROEbBVBXSKkQrAXKWwpMt_ykmdFe0lZ3sj-tO4BuJVcv580F4gqAayHZrHm8Jtn_Dv6NpEiw2BKwBGcnsk6Dn5CMKZMw-FjCuAtxSdwU1rZ44lIsOSy2JaSIpCTictqQXfDTgB-as9FO6D8e33nzfHf7dPOjvX_4_vPm-r51QvSlzq4Xo-TMcy-YGDrWWzcuoBusch1oKjvlBiks68F3VjGhhB4GqZQeuVxoPm8uD7mbnF63HotZB3R-mmz0aYuGCg690ACySr_8I12lbY61nWG6cmIS1D6QHlT1GMTsR7PJ9dy8MxTMHrM5YDYVs9ljNrx6vh6TLVZuY7bRBXw3MiVrby2qjh10WL_i0ue_Df4X_vlY6FeKy9fqew8WFZeUveJ_AGBulz8</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Shi, Wenjiao</creator><creator>Tao, Fulu</creator><creator>Zhang, Zhao</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20130601</creationdate><title>A review on statistical models for identifying climate contributions to crop yields</title><author>Shi, Wenjiao ; Tao, Fulu ; Zhang, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-c4584f632e3e424d528acfb05da7c5091657cd64a280e5a724749dd6779f36b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural production</topic><topic>Applied climatology</topic><topic>Bgi / Prodig</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Crop yield</topic><topic>Cultivars</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Nature Conservation</topic><topic>Physical Geography</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>作物产量</topic><topic>响应灵敏度</topic><topic>回归方程</topic><topic>时间序列模型</topic><topic>气候变化</topic><topic>空间尺度</topic><topic>统计模型</topic><topic>评论</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Wenjiao</creatorcontrib><creatorcontrib>Tao, Fulu</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of geographical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Wenjiao</au><au>Tao, Fulu</au><au>Zhang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A review on statistical models for identifying climate contributions to crop yields</atitle><jtitle>Journal of geographical sciences</jtitle><stitle>J. Geogr. Sci</stitle><addtitle>Journal of Geographical Sciences</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>567</spage><epage>576</epage><pages>567-576</pages><issn>1009-637X</issn><eissn>1861-9568</eissn><abstract>Statistical models using historical data on crop yields and weather to calibrate rela- tively simple regression equations have been widely and extensively applied in previous studies, and have provided a common alternative to process-based models, which require extensive input data on cultivar, management, and soil conditions. However, very few studies had been conducted to review systematically the previous statistical models for indentifying climate contributions to crop yields. This paper introduces three main statistical methods, i.e., time-series model, cross-section model and panel model, which have been used to identify such issues in the field of agrometeorology. Generally, research spatial scale could be categorized into two types using statistical models, including site scale and regional scale (e.g. global scale, national scale, provincial scale and county scale). Four issues exist in identifying response sensitivity of crop yields to climate change by statistical models. The issues include the extent of spatial and temporal scale, non-climatic trend removal, colinearity existing in climate variables and non-consideration of adaptations. Respective resolutions for the above four issues have been put forward in the section of perspective on the future of statistical models finally.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11442-013-1029-3</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1009-637X
ispartof Journal of geographical sciences, 2013-06, Vol.23 (3), p.567-576
issn 1009-637X
1861-9568
language eng
recordid cdi_proquest_miscellaneous_1430849006
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Agricultural production
Applied climatology
Bgi / Prodig
Climate change
Climatology
Crop yield
Cultivars
Earth and Environmental Science
Geographical Information Systems/Cartography
Geography
Nature Conservation
Physical Geography
Remote Sensing/Photogrammetry
Statistical methods
Statistical models
作物产量
响应灵敏度
回归方程
时间序列模型
气候变化
空间尺度
统计模型
评论
title A review on statistical models for identifying climate contributions to crop yields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20review%20on%20statistical%20models%20for%20identifying%20climate%20contributions%20to%20crop%20yields&rft.jtitle=Journal%20of%20geographical%20sciences&rft.au=Shi,%20Wenjiao&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=567&rft.epage=576&rft.pages=567-576&rft.issn=1009-637X&rft.eissn=1861-9568&rft_id=info:doi/10.1007/s11442-013-1029-3&rft_dat=%3Cproquest_cross%3E2918626079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918626079&rft_id=info:pmid/&rft_cqvip_id=45286687&rfr_iscdi=true