Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion
In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2012-08, Vol.21 (8), p.3405-3415 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3415 |
---|---|
container_issue | 8 |
container_start_page | 3405 |
container_title | IEEE transactions on image processing |
container_volume | 21 |
creator | Szolgay, D. Sziranyi, T. |
description | In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority. |
doi_str_mv | 10.1109/TIP.2012.2192128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430847459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6175955</ieee_id><sourcerecordid>1430847459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVpqJ2k90Kh6BLIZR2NVvuho3HaxBBwDr4vWmmUqOyuXEkudX59Fey6p5mRnvc9PIR8AbYAYPJuu35ecAZ8wUFy4O0HMgcpoGBM8I95Z1VTNCDkjFzG-JMxEBXUn8iMc9FCC3JOzNKoXXK_ka5H9YL0HrUfdz665PxE3ZQ8XamQfD7UZOgW_6R9QPqc3yLd5OTo3tDQ_kDTK9JNSK_-xU9qcOlAV8ElDLnnmlxYNUT8fJpXZPvj-3b1WDxtHtar5VOhSwmpwFr0VWugYdJajcBloy2Wqu8ZlvkWsjJMSSF6bbTVEgyUvVEarLSa9eUVuT3W7oL_tceYutFFjcOgJvT72IEoWSsaUcmMsiOqg48xoO12wY0qHDpg3bvaLqvt3tV2J7U58u3Uvu9HNOfAP5cZuDkBKmo12KAm7eJ_rs4UE3Xmvh45h4jn7xqaSlZV-RdNqIxa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430847459</pqid></control><display><type>article</type><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Szolgay, D. ; Sziranyi, T.</creator><creatorcontrib>Szolgay, D. ; Sziranyi, T.</creatorcontrib><description>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2192128</identifier><identifier>PMID: 22481819</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic diffusion ; Anisotropic magnetoresistance ; Applied sciences ; Cartoons as Topic ; Correlation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Image decomposition ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Noise ; Pattern Recognition, Automated - methods ; quality criterion ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; Smoothing methods ; Telecommunications and information theory ; texture segmentation ; total variation ; Vectors</subject><ispartof>IEEE transactions on image processing, 2012-08, Vol.21 (8), p.3405-3415</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</citedby><cites>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6175955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6175955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26181046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22481819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Sziranyi, T.</creatorcontrib><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</description><subject>Algorithms</subject><subject>Anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Applied sciences</subject><subject>Cartoons as Topic</subject><subject>Correlation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Image decomposition</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Pattern Recognition, Automated - methods</subject><subject>quality criterion</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Smoothing methods</subject><subject>Telecommunications and information theory</subject><subject>texture segmentation</subject><subject>total variation</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkE1rGzEQhkVpqJ2k90Kh6BLIZR2NVvuho3HaxBBwDr4vWmmUqOyuXEkudX59Fey6p5mRnvc9PIR8AbYAYPJuu35ecAZ8wUFy4O0HMgcpoGBM8I95Z1VTNCDkjFzG-JMxEBXUn8iMc9FCC3JOzNKoXXK_ka5H9YL0HrUfdz665PxE3ZQ8XamQfD7UZOgW_6R9QPqc3yLd5OTo3tDQ_kDTK9JNSK_-xU9qcOlAV8ElDLnnmlxYNUT8fJpXZPvj-3b1WDxtHtar5VOhSwmpwFr0VWugYdJajcBloy2Wqu8ZlvkWsjJMSSF6bbTVEgyUvVEarLSa9eUVuT3W7oL_tceYutFFjcOgJvT72IEoWSsaUcmMsiOqg48xoO12wY0qHDpg3bvaLqvt3tV2J7U58u3Uvu9HNOfAP5cZuDkBKmo12KAm7eJ_rs4UE3Xmvh45h4jn7xqaSlZV-RdNqIxa</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Szolgay, D.</creator><creator>Sziranyi, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><author>Szolgay, D. ; Sziranyi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Applied sciences</topic><topic>Cartoons as Topic</topic><topic>Correlation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Image decomposition</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Pattern Recognition, Automated - methods</topic><topic>quality criterion</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Smoothing methods</topic><topic>Telecommunications and information theory</topic><topic>texture segmentation</topic><topic>total variation</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Sziranyi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szolgay, D.</au><au>Sziranyi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>21</volume><issue>8</issue><spage>3405</spage><epage>3415</epage><pages>3405-3415</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22481819</pmid><doi>10.1109/TIP.2012.2192128</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2012-08, Vol.21 (8), p.3405-3415 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_1430847459 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anisotropic diffusion Anisotropic magnetoresistance Applied sciences Cartoons as Topic Correlation Detection, estimation, filtering, equalization, prediction Exact sciences and technology Image decomposition Image edge detection Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Noise Pattern Recognition, Automated - methods quality criterion Reproducibility of Results Sensitivity and Specificity Signal and communications theory Signal processing Signal, noise Smoothing methods Telecommunications and information theory texture segmentation total variation Vectors |
title | Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Image%20Decomposition%20into%20Cartoon%20and%20Texture%20Parts%20Optimized%20by%20the%20Orthogonality%20Criterion&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Szolgay,%20D.&rft.date=2012-08-01&rft.volume=21&rft.issue=8&rft.spage=3405&rft.epage=3415&rft.pages=3405-3415&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2192128&rft_dat=%3Cproquest_RIE%3E1430847459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430847459&rft_id=info:pmid/22481819&rft_ieee_id=6175955&rfr_iscdi=true |