Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion

In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2012-08, Vol.21 (8), p.3405-3415
Hauptverfasser: Szolgay, D., Sziranyi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3415
container_issue 8
container_start_page 3405
container_title IEEE transactions on image processing
container_volume 21
creator Szolgay, D.
Sziranyi, T.
description In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.
doi_str_mv 10.1109/TIP.2012.2192128
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1430847459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6175955</ieee_id><sourcerecordid>1430847459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</originalsourceid><addsrcrecordid>eNpFkE1rGzEQhkVpqJ2k90Kh6BLIZR2NVvuho3HaxBBwDr4vWmmUqOyuXEkudX59Fey6p5mRnvc9PIR8AbYAYPJuu35ecAZ8wUFy4O0HMgcpoGBM8I95Z1VTNCDkjFzG-JMxEBXUn8iMc9FCC3JOzNKoXXK_ka5H9YL0HrUfdz665PxE3ZQ8XamQfD7UZOgW_6R9QPqc3yLd5OTo3tDQ_kDTK9JNSK_-xU9qcOlAV8ElDLnnmlxYNUT8fJpXZPvj-3b1WDxtHtar5VOhSwmpwFr0VWugYdJajcBloy2Wqu8ZlvkWsjJMSSF6bbTVEgyUvVEarLSa9eUVuT3W7oL_tceYutFFjcOgJvT72IEoWSsaUcmMsiOqg48xoO12wY0qHDpg3bvaLqvt3tV2J7U58u3Uvu9HNOfAP5cZuDkBKmo12KAm7eJ_rs4UE3Xmvh45h4jn7xqaSlZV-RdNqIxa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1430847459</pqid></control><display><type>article</type><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Szolgay, D. ; Sziranyi, T.</creator><creatorcontrib>Szolgay, D. ; Sziranyi, T.</creatorcontrib><description>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2012.2192128</identifier><identifier>PMID: 22481819</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic diffusion ; Anisotropic magnetoresistance ; Applied sciences ; Cartoons as Topic ; Correlation ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Image decomposition ; Image edge detection ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Noise ; Pattern Recognition, Automated - methods ; quality criterion ; Reproducibility of Results ; Sensitivity and Specificity ; Signal and communications theory ; Signal processing ; Signal, noise ; Smoothing methods ; Telecommunications and information theory ; texture segmentation ; total variation ; Vectors</subject><ispartof>IEEE transactions on image processing, 2012-08, Vol.21 (8), p.3405-3415</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</citedby><cites>FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6175955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6175955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26181046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22481819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Sziranyi, T.</creatorcontrib><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</description><subject>Algorithms</subject><subject>Anisotropic diffusion</subject><subject>Anisotropic magnetoresistance</subject><subject>Applied sciences</subject><subject>Cartoons as Topic</subject><subject>Correlation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Image decomposition</subject><subject>Image edge detection</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Noise</subject><subject>Pattern Recognition, Automated - methods</subject><subject>quality criterion</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Smoothing methods</subject><subject>Telecommunications and information theory</subject><subject>texture segmentation</subject><subject>total variation</subject><subject>Vectors</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpFkE1rGzEQhkVpqJ2k90Kh6BLIZR2NVvuho3HaxBBwDr4vWmmUqOyuXEkudX59Fey6p5mRnvc9PIR8AbYAYPJuu35ecAZ8wUFy4O0HMgcpoGBM8I95Z1VTNCDkjFzG-JMxEBXUn8iMc9FCC3JOzNKoXXK_ka5H9YL0HrUfdz665PxE3ZQ8XamQfD7UZOgW_6R9QPqc3yLd5OTo3tDQ_kDTK9JNSK_-xU9qcOlAV8ElDLnnmlxYNUT8fJpXZPvj-3b1WDxtHtar5VOhSwmpwFr0VWugYdJajcBloy2Wqu8ZlvkWsjJMSSF6bbTVEgyUvVEarLSa9eUVuT3W7oL_tceYutFFjcOgJvT72IEoWSsaUcmMsiOqg48xoO12wY0qHDpg3bvaLqvt3tV2J7U58u3Uvu9HNOfAP5cZuDkBKmo12KAm7eJ_rs4UE3Xmvh45h4jn7xqaSlZV-RdNqIxa</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Szolgay, D.</creator><creator>Sziranyi, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120801</creationdate><title>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</title><author>Szolgay, D. ; Sziranyi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e64b58d1709ffce1297cfe3abb0e3ce1495d0a944bcdcfc91d13bdac1f9fc0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anisotropic diffusion</topic><topic>Anisotropic magnetoresistance</topic><topic>Applied sciences</topic><topic>Cartoons as Topic</topic><topic>Correlation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Image decomposition</topic><topic>Image edge detection</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Noise</topic><topic>Pattern Recognition, Automated - methods</topic><topic>quality criterion</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Smoothing methods</topic><topic>Telecommunications and information theory</topic><topic>texture segmentation</topic><topic>total variation</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szolgay, D.</creatorcontrib><creatorcontrib>Sziranyi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Szolgay, D.</au><au>Sziranyi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>21</volume><issue>8</issue><spage>3405</spage><epage>3415</epage><pages>3405-3415</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, a new decomposition method is introduced that splits the image into geometric (or cartoon) and texture parts. Following a total variation based preprocesssing, the core of the proposed method is an anisotropic diffusion with an orthogonality-based parameter estimation and stopping condition. The quality criterion is defined by the theoretical assumption that the cartoon and the texture components of an image are orthogonal to each other. The presented method has been compared with other decomposition algorithms through visual and numerical evaluation to prove its superiority.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>22481819</pmid><doi>10.1109/TIP.2012.2192128</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2012-08, Vol.21 (8), p.3405-3415
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1430847459
source IEEE Electronic Library (IEL)
subjects Algorithms
Anisotropic diffusion
Anisotropic magnetoresistance
Applied sciences
Cartoons as Topic
Correlation
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Image decomposition
Image edge detection
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Noise
Pattern Recognition, Automated - methods
quality criterion
Reproducibility of Results
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal, noise
Smoothing methods
Telecommunications and information theory
texture segmentation
total variation
Vectors
title Adaptive Image Decomposition into Cartoon and Texture Parts Optimized by the Orthogonality Criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Image%20Decomposition%20into%20Cartoon%20and%20Texture%20Parts%20Optimized%20by%20the%20Orthogonality%20Criterion&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Szolgay,%20D.&rft.date=2012-08-01&rft.volume=21&rft.issue=8&rft.spage=3405&rft.epage=3415&rft.pages=3405-3415&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2012.2192128&rft_dat=%3Cproquest_RIE%3E1430847459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1430847459&rft_id=info:pmid/22481819&rft_ieee_id=6175955&rfr_iscdi=true