Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches

In this paper, the modified couple stress-based strain gradient theory is used to provide a unified nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica 2013-08, Vol.224 (8), p.1741-1755
Hauptverfasser: Li, Yingli, Meguid, S. A., Fu, Yiming, Xu, Daolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1755
container_issue 8
container_start_page 1741
container_title Acta mechanica
container_volume 224
creator Li, Yingli
Meguid, S. A.
Fu, Yiming
Xu, Daolin
description In this paper, the modified couple stress-based strain gradient theory is used to provide a unified nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the contact between the microbeam and the dielectric substrate using nonlinear springs and dampers, but also accounts for the system size by introducing an internal material length scale parameter. In view of the size of the microbeam and electrostatic gaps involved, Casimir and Van der Waals forces, damping force due to the squeeze membrane effect and electrostatic force with first-order fringing field effects were accounted for in our model. The resulting nonlinear system of PDEs was expanded into a coupled system using series expansion and integrated into ODEs using weighted residuals of the Galerkin type. To overcome the difficulties associated with the determination of the contact length, the Heaviside function for deflection was replaced with a Heaviside function for the contact length, and an iterative procedure was adopted to determine the contact length. To obtain the time variation of the microbeam, the dynamic system of equations was solved using Newmark’s integration scheme. The outcome of our work shows the dependence of the pull-in voltage upon the inertia force, slenderness ratios of the microbeam, the electrostatic gap and the initial boundary conditions of the switch. In addition, we were also able to provide the full history of the microbeam past the pull-in threshold.
doi_str_mv 10.1007/s00707-013-0831-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429893873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A343259195</galeid><sourcerecordid>A343259195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-24c80c2078e65fe6cc550aa0de7378e78e4b3bb2ec83503ff695c1499f487b363</originalsourceid><addsrcrecordid>eNp1kVFrHCEQx6W00GuSD9C3hb70xWRm1VUfQ7hrC3cEkuZZPFdTjz030T3Kfft42T6EQnDQceb3F4c_IV8RLhFAXpW6gaSAjIJiSPkHssAONe00kx_JAgCQCi3hM_lSyq7eWslxQVYPKYbo-yaNaYjJ29w8H2yJZbJTdI1NfdMfk92_5nY41k4zhuZuRTfLzX1T_sbJ_fHlnHwKdij-4t95Rh5Wy983P-n69sevm-s1dUypibbcKXAtSOU7EXznnBBgLfReslqrwbdsu229U0wAC6HTwiHXOnAlt6xjZ-T7_O5THp8PvkxmH4vzw2CTHw_FIG-10kxJVtFv_6G78ZDrDCcKUSCgbCt1OVOPdvAmpjBO2bq6el9nHpMPsdavGWet0KhFFeAscHksJftgnnLc23w0COZkhZmtMNUKc7LC8KppZ02pbHr0-c1X3hW9AI8siYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1411510172</pqid></control><display><type>article</type><title>Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches</title><source>SpringerLink Journals (MCLS)</source><creator>Li, Yingli ; Meguid, S. A. ; Fu, Yiming ; Xu, Daolin</creator><creatorcontrib>Li, Yingli ; Meguid, S. A. ; Fu, Yiming ; Xu, Daolin</creatorcontrib><description>In this paper, the modified couple stress-based strain gradient theory is used to provide a unified nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the contact between the microbeam and the dielectric substrate using nonlinear springs and dampers, but also accounts for the system size by introducing an internal material length scale parameter. In view of the size of the microbeam and electrostatic gaps involved, Casimir and Van der Waals forces, damping force due to the squeeze membrane effect and electrostatic force with first-order fringing field effects were accounted for in our model. The resulting nonlinear system of PDEs was expanded into a coupled system using series expansion and integrated into ODEs using weighted residuals of the Galerkin type. To overcome the difficulties associated with the determination of the contact length, the Heaviside function for deflection was replaced with a Heaviside function for the contact length, and an iterative procedure was adopted to determine the contact length. To obtain the time variation of the microbeam, the dynamic system of equations was solved using Newmark’s integration scheme. The outcome of our work shows the dependence of the pull-in voltage upon the inertia force, slenderness ratios of the microbeam, the electrostatic gap and the initial boundary conditions of the switch. In addition, we were also able to provide the full history of the microbeam past the pull-in threshold.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-013-0831-4</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analysis ; Classical and Continuum Physics ; Contact length ; Control ; Dielectrics ; Dynamical Systems ; Electrostatics ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Mathematical models ; Microelectromechanical systems ; Microorganisms ; Nonlinear dynamics ; Nonlinear equations ; Nonlinearity ; Solid Mechanics ; Switches ; Switching ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2013-08, Vol.224 (8), p.1741-1755</ispartof><rights>Springer-Verlag Wien 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-24c80c2078e65fe6cc550aa0de7378e78e4b3bb2ec83503ff695c1499f487b363</citedby><cites>FETCH-LOGICAL-c388t-24c80c2078e65fe6cc550aa0de7378e78e4b3bb2ec83503ff695c1499f487b363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-013-0831-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-013-0831-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Yingli</creatorcontrib><creatorcontrib>Meguid, S. A.</creatorcontrib><creatorcontrib>Fu, Yiming</creatorcontrib><creatorcontrib>Xu, Daolin</creatorcontrib><title>Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>In this paper, the modified couple stress-based strain gradient theory is used to provide a unified nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the contact between the microbeam and the dielectric substrate using nonlinear springs and dampers, but also accounts for the system size by introducing an internal material length scale parameter. In view of the size of the microbeam and electrostatic gaps involved, Casimir and Van der Waals forces, damping force due to the squeeze membrane effect and electrostatic force with first-order fringing field effects were accounted for in our model. The resulting nonlinear system of PDEs was expanded into a coupled system using series expansion and integrated into ODEs using weighted residuals of the Galerkin type. To overcome the difficulties associated with the determination of the contact length, the Heaviside function for deflection was replaced with a Heaviside function for the contact length, and an iterative procedure was adopted to determine the contact length. To obtain the time variation of the microbeam, the dynamic system of equations was solved using Newmark’s integration scheme. The outcome of our work shows the dependence of the pull-in voltage upon the inertia force, slenderness ratios of the microbeam, the electrostatic gap and the initial boundary conditions of the switch. In addition, we were also able to provide the full history of the microbeam past the pull-in threshold.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Contact length</subject><subject>Control</subject><subject>Dielectrics</subject><subject>Dynamical Systems</subject><subject>Electrostatics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Mathematical models</subject><subject>Microelectromechanical systems</subject><subject>Microorganisms</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Solid Mechanics</subject><subject>Switches</subject><subject>Switching</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kVFrHCEQx6W00GuSD9C3hb70xWRm1VUfQ7hrC3cEkuZZPFdTjz030T3Kfft42T6EQnDQceb3F4c_IV8RLhFAXpW6gaSAjIJiSPkHssAONe00kx_JAgCQCi3hM_lSyq7eWslxQVYPKYbo-yaNaYjJ29w8H2yJZbJTdI1NfdMfk92_5nY41k4zhuZuRTfLzX1T_sbJ_fHlnHwKdij-4t95Rh5Wy983P-n69sevm-s1dUypibbcKXAtSOU7EXznnBBgLfReslqrwbdsu229U0wAC6HTwiHXOnAlt6xjZ-T7_O5THp8PvkxmH4vzw2CTHw_FIG-10kxJVtFv_6G78ZDrDCcKUSCgbCt1OVOPdvAmpjBO2bq6el9nHpMPsdavGWet0KhFFeAscHksJftgnnLc23w0COZkhZmtMNUKc7LC8KppZ02pbHr0-c1X3hW9AI8siYk</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Li, Yingli</creator><creator>Meguid, S. A.</creator><creator>Fu, Yiming</creator><creator>Xu, Daolin</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches</title><author>Li, Yingli ; Meguid, S. A. ; Fu, Yiming ; Xu, Daolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-24c80c2078e65fe6cc550aa0de7378e78e4b3bb2ec83503ff695c1499f487b363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Contact length</topic><topic>Control</topic><topic>Dielectrics</topic><topic>Dynamical Systems</topic><topic>Electrostatics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Mathematical models</topic><topic>Microelectromechanical systems</topic><topic>Microorganisms</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Solid Mechanics</topic><topic>Switches</topic><topic>Switching</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yingli</creatorcontrib><creatorcontrib>Meguid, S. A.</creatorcontrib><creatorcontrib>Fu, Yiming</creatorcontrib><creatorcontrib>Xu, Daolin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yingli</au><au>Meguid, S. A.</au><au>Fu, Yiming</au><au>Xu, Daolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>224</volume><issue>8</issue><spage>1741</spage><epage>1755</epage><pages>1741-1755</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>In this paper, the modified couple stress-based strain gradient theory is used to provide a unified nonlinear model of the quasistatic and dynamic behavior of an electrostatic microelectromechanical systems microbeam capacitive switch of the Euler–Bernoulli type. Our model not only accounts for the contact between the microbeam and the dielectric substrate using nonlinear springs and dampers, but also accounts for the system size by introducing an internal material length scale parameter. In view of the size of the microbeam and electrostatic gaps involved, Casimir and Van der Waals forces, damping force due to the squeeze membrane effect and electrostatic force with first-order fringing field effects were accounted for in our model. The resulting nonlinear system of PDEs was expanded into a coupled system using series expansion and integrated into ODEs using weighted residuals of the Galerkin type. To overcome the difficulties associated with the determination of the contact length, the Heaviside function for deflection was replaced with a Heaviside function for the contact length, and an iterative procedure was adopted to determine the contact length. To obtain the time variation of the microbeam, the dynamic system of equations was solved using Newmark’s integration scheme. The outcome of our work shows the dependence of the pull-in voltage upon the inertia force, slenderness ratios of the microbeam, the electrostatic gap and the initial boundary conditions of the switch. In addition, we were also able to provide the full history of the microbeam past the pull-in threshold.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-013-0831-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2013-08, Vol.224 (8), p.1741-1755
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_1429893873
source SpringerLink Journals (MCLS)
subjects Analysis
Classical and Continuum Physics
Contact length
Control
Dielectrics
Dynamical Systems
Electrostatics
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Mathematical models
Microelectromechanical systems
Microorganisms
Nonlinear dynamics
Nonlinear equations
Nonlinearity
Solid Mechanics
Switches
Switching
Theoretical and Applied Mechanics
Vibration
title Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unified%20nonlinear%20quasistatic%20and%20dynamic%20analysis%20of%20RF-MEMS%20switches&rft.jtitle=Acta%20mechanica&rft.au=Li,%20Yingli&rft.date=2013-08-01&rft.volume=224&rft.issue=8&rft.spage=1741&rft.epage=1755&rft.pages=1741-1755&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-013-0831-4&rft_dat=%3Cgale_proqu%3EA343259195%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1411510172&rft_id=info:pmid/&rft_galeid=A343259195&rfr_iscdi=true