Intelligent Prediction of Process Parameters of Power Station Boiler Bender
Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system...
Gespeichert in:
Veröffentlicht in: | International journal of advancements in computing technology 2013-03, Vol.5 (6), p.184-191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 6 |
container_start_page | 184 |
container_title | International journal of advancements in computing technology |
container_volume | 5 |
creator | Shengle, Ren Ye, Dai Guangfei, Wu Tianyu, Cheng Ming, Che |
description | Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters. |
doi_str_mv | 10.4156/ijact.vol5.issue6.22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429884833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429884833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c783-f2275fa2b214088b8f969073b27ad7737c084f5bc7e2ddf7fceba9ca6ea720783</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWGq_gYc9etk1f3Y3ydEWtcWCBXsP2exEUrabmqSK3960dS4zb3g8eD-E7gmuatK0j26nTaq-_dBULsYjtBWlV2hCKWOlZIxf5xvjphSYyVs0i3GH80iOCWkm6G01JhgG9wljKjYBemeS82PhbVbeQIzFRge9hwQhnr_-B0LxkfTZNvduyHIOYw_hDt1YPUSY_e8p2r48bxfLcv3-ulo8rUvDBSstpbyxmnaU1FiITljZSsxZR7nuOWfcYFHbpjMcaN9bbg10WhrdguYU54QperjEHoL_OkJMau-iySX0CP4YFampFKIWjGVrfbGa4GMMYNUhuL0Ov4pgdaKnzvTUiZ660FMZ3B_cpGfX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429884833</pqid></control><display><type>article</type><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</creator><creatorcontrib>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</creatorcontrib><description>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><identifier>DOI: 10.4156/ijact.vol5.issue6.22</identifier><language>eng</language><subject>Bending ; Bending machines ; Control systems ; Forming ; Mathematical models ; Power stations ; Process parameters ; Tubes</subject><ispartof>International journal of advancements in computing technology, 2013-03, Vol.5 (6), p.184-191</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shengle, Ren</creatorcontrib><creatorcontrib>Ye, Dai</creatorcontrib><creatorcontrib>Guangfei, Wu</creatorcontrib><creatorcontrib>Tianyu, Cheng</creatorcontrib><creatorcontrib>Ming, Che</creatorcontrib><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><title>International journal of advancements in computing technology</title><description>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</description><subject>Bending</subject><subject>Bending machines</subject><subject>Control systems</subject><subject>Forming</subject><subject>Mathematical models</subject><subject>Power stations</subject><subject>Process parameters</subject><subject>Tubes</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWGq_gYc9etk1f3Y3ydEWtcWCBXsP2exEUrabmqSK3960dS4zb3g8eD-E7gmuatK0j26nTaq-_dBULsYjtBWlV2hCKWOlZIxf5xvjphSYyVs0i3GH80iOCWkm6G01JhgG9wljKjYBemeS82PhbVbeQIzFRge9hwQhnr_-B0LxkfTZNvduyHIOYw_hDt1YPUSY_e8p2r48bxfLcv3-ulo8rUvDBSstpbyxmnaU1FiITljZSsxZR7nuOWfcYFHbpjMcaN9bbg10WhrdguYU54QperjEHoL_OkJMau-iySX0CP4YFampFKIWjGVrfbGa4GMMYNUhuL0Ov4pgdaKnzvTUiZ660FMZ3B_cpGfX</recordid><startdate>20130331</startdate><enddate>20130331</enddate><creator>Shengle, Ren</creator><creator>Ye, Dai</creator><creator>Guangfei, Wu</creator><creator>Tianyu, Cheng</creator><creator>Ming, Che</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130331</creationdate><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><author>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c783-f2275fa2b214088b8f969073b27ad7737c084f5bc7e2ddf7fceba9ca6ea720783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bending</topic><topic>Bending machines</topic><topic>Control systems</topic><topic>Forming</topic><topic>Mathematical models</topic><topic>Power stations</topic><topic>Process parameters</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shengle, Ren</creatorcontrib><creatorcontrib>Ye, Dai</creatorcontrib><creatorcontrib>Guangfei, Wu</creatorcontrib><creatorcontrib>Tianyu, Cheng</creatorcontrib><creatorcontrib>Ming, Che</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shengle, Ren</au><au>Ye, Dai</au><au>Guangfei, Wu</au><au>Tianyu, Cheng</au><au>Ming, Che</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-03-31</date><risdate>2013</risdate><volume>5</volume><issue>6</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</abstract><doi>10.4156/ijact.vol5.issue6.22</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2005-8039 |
ispartof | International journal of advancements in computing technology, 2013-03, Vol.5 (6), p.184-191 |
issn | 2005-8039 2233-9337 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429884833 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Bending Bending machines Control systems Forming Mathematical models Power stations Process parameters Tubes |
title | Intelligent Prediction of Process Parameters of Power Station Boiler Bender |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Prediction%20of%20Process%20Parameters%20of%20Power%20Station%20Boiler%20Bender&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Shengle,%20Ren&rft.date=2013-03-31&rft.volume=5&rft.issue=6&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/10.4156/ijact.vol5.issue6.22&rft_dat=%3Cproquest_cross%3E1429884833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429884833&rft_id=info:pmid/&rfr_iscdi=true |