Intelligent Prediction of Process Parameters of Power Station Boiler Bender

Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advancements in computing technology 2013-03, Vol.5 (6), p.184-191
Hauptverfasser: Shengle, Ren, Ye, Dai, Guangfei, Wu, Tianyu, Cheng, Ming, Che
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 6
container_start_page 184
container_title International journal of advancements in computing technology
container_volume 5
creator Shengle, Ren
Ye, Dai
Guangfei, Wu
Tianyu, Cheng
Ming, Che
description Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.
doi_str_mv 10.4156/ijact.vol5.issue6.22
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429884833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429884833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c783-f2275fa2b214088b8f969073b27ad7737c084f5bc7e2ddf7fceba9ca6ea720783</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWGq_gYc9etk1f3Y3ydEWtcWCBXsP2exEUrabmqSK3960dS4zb3g8eD-E7gmuatK0j26nTaq-_dBULsYjtBWlV2hCKWOlZIxf5xvjphSYyVs0i3GH80iOCWkm6G01JhgG9wljKjYBemeS82PhbVbeQIzFRge9hwQhnr_-B0LxkfTZNvduyHIOYw_hDt1YPUSY_e8p2r48bxfLcv3-ulo8rUvDBSstpbyxmnaU1FiITljZSsxZR7nuOWfcYFHbpjMcaN9bbg10WhrdguYU54QperjEHoL_OkJMau-iySX0CP4YFampFKIWjGVrfbGa4GMMYNUhuL0Ov4pgdaKnzvTUiZ660FMZ3B_cpGfX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429884833</pqid></control><display><type>article</type><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</creator><creatorcontrib>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</creatorcontrib><description>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><identifier>DOI: 10.4156/ijact.vol5.issue6.22</identifier><language>eng</language><subject>Bending ; Bending machines ; Control systems ; Forming ; Mathematical models ; Power stations ; Process parameters ; Tubes</subject><ispartof>International journal of advancements in computing technology, 2013-03, Vol.5 (6), p.184-191</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shengle, Ren</creatorcontrib><creatorcontrib>Ye, Dai</creatorcontrib><creatorcontrib>Guangfei, Wu</creatorcontrib><creatorcontrib>Tianyu, Cheng</creatorcontrib><creatorcontrib>Ming, Che</creatorcontrib><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><title>International journal of advancements in computing technology</title><description>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</description><subject>Bending</subject><subject>Bending machines</subject><subject>Control systems</subject><subject>Forming</subject><subject>Mathematical models</subject><subject>Power stations</subject><subject>Process parameters</subject><subject>Tubes</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWGq_gYc9etk1f3Y3ydEWtcWCBXsP2exEUrabmqSK3960dS4zb3g8eD-E7gmuatK0j26nTaq-_dBULsYjtBWlV2hCKWOlZIxf5xvjphSYyVs0i3GH80iOCWkm6G01JhgG9wljKjYBemeS82PhbVbeQIzFRge9hwQhnr_-B0LxkfTZNvduyHIOYw_hDt1YPUSY_e8p2r48bxfLcv3-ulo8rUvDBSstpbyxmnaU1FiITljZSsxZR7nuOWfcYFHbpjMcaN9bbg10WhrdguYU54QperjEHoL_OkJMau-iySX0CP4YFampFKIWjGVrfbGa4GMMYNUhuL0Ov4pgdaKnzvTUiZ660FMZ3B_cpGfX</recordid><startdate>20130331</startdate><enddate>20130331</enddate><creator>Shengle, Ren</creator><creator>Ye, Dai</creator><creator>Guangfei, Wu</creator><creator>Tianyu, Cheng</creator><creator>Ming, Che</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130331</creationdate><title>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</title><author>Shengle, Ren ; Ye, Dai ; Guangfei, Wu ; Tianyu, Cheng ; Ming, Che</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c783-f2275fa2b214088b8f969073b27ad7737c084f5bc7e2ddf7fceba9ca6ea720783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bending</topic><topic>Bending machines</topic><topic>Control systems</topic><topic>Forming</topic><topic>Mathematical models</topic><topic>Power stations</topic><topic>Process parameters</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shengle, Ren</creatorcontrib><creatorcontrib>Ye, Dai</creatorcontrib><creatorcontrib>Guangfei, Wu</creatorcontrib><creatorcontrib>Tianyu, Cheng</creatorcontrib><creatorcontrib>Ming, Che</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shengle, Ren</au><au>Ye, Dai</au><au>Guangfei, Wu</au><au>Tianyu, Cheng</au><au>Ming, Che</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Prediction of Process Parameters of Power Station Boiler Bender</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-03-31</date><risdate>2013</risdate><volume>5</volume><issue>6</issue><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>Because the traditional tube bending technology of power station boiler bender is not good at controlling the forming quality and setting process parameters, it usually lengthens the production cycle and wastes costs. Improved BP neural network is used to establish bender intelligent control system model which can predict and analyze the forming qualities after tube bending. The system determines the reasonableness of process parameters from the result of forming qualities and gives the revised parameters back to the intelligent control system model. Then the model predicts the forming qualities repeated till the perfect forming quality is gained. The revised parameters become the practice process parameters.</abstract><doi>10.4156/ijact.vol5.issue6.22</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2005-8039
ispartof International journal of advancements in computing technology, 2013-03, Vol.5 (6), p.184-191
issn 2005-8039
2233-9337
language eng
recordid cdi_proquest_miscellaneous_1429884833
source EZB-FREE-00999 freely available EZB journals
subjects Bending
Bending machines
Control systems
Forming
Mathematical models
Power stations
Process parameters
Tubes
title Intelligent Prediction of Process Parameters of Power Station Boiler Bender
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Prediction%20of%20Process%20Parameters%20of%20Power%20Station%20Boiler%20Bender&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Shengle,%20Ren&rft.date=2013-03-31&rft.volume=5&rft.issue=6&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/10.4156/ijact.vol5.issue6.22&rft_dat=%3Cproquest_cross%3E1429884833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429884833&rft_id=info:pmid/&rfr_iscdi=true