Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications

This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2013-07, Vol.46 (26), p.264002-1-7
Hauptverfasser: Packeer, F, Isa, M M, Jubadi, WM, Ian, K W, Missous, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1-7
container_issue 26
container_start_page 264002
container_title Journal of physics. D, Applied physics
container_volume 46
creator Packeer, F
Isa, M M
Jubadi, WM
Ian, K W
Missous, M
description This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.
doi_str_mv 10.1088/0022-3727/46/26/264002
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429883805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429883805</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_14298838053</originalsourceid><addsrcrecordid>eNqVjstOw0AMRWcBEuXxC8jLZpFm8mgzLCvUUhbsuq-c4KQDk5kwTsrj7_gziBoBWyRL1zr2vbYQ17GcxVKpSMokCdM8yaNsESVDZd_oREx-BmfinPlJSjlfqHgiPtdYeF1ip50FtI9Q7tFj2ZHXH0foKujIsjYE9xa4L6ZylgZLM7Z5sGQo0HtN_hjgmtYTsz78MeTBHf56ebhiLRloN6uHLcMeD9rWQG-dp4bMOxj3CjV2BIbwGWuCyvkBhtZpJsC2NePTfClOKzRMV6NeiOl6tb3dhK13Lz1xt2s0l2QMWnI97-IsuVEqVXKe_mP1C95nbqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429883805</pqid></control><display><type>article</type><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</creator><creatorcontrib>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</creatorcontrib><description>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</description><identifier>ISSN: 0022-3727</identifier><identifier>DOI: 10.1088/0022-3727/46/26/264002</identifier><language>eng</language><subject>Barriers ; Breakdown ; Channels ; Current leakage ; Design engineering ; Electric potential ; Gates ; Voltage</subject><ispartof>Journal of physics. D, Applied physics, 2013-07, Vol.46 (26), p.264002-1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Packeer, F</creatorcontrib><creatorcontrib>Isa, M M</creatorcontrib><creatorcontrib>Jubadi, WM</creatorcontrib><creatorcontrib>Ian, K W</creatorcontrib><creatorcontrib>Missous, M</creatorcontrib><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><title>Journal of physics. D, Applied physics</title><description>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</description><subject>Barriers</subject><subject>Breakdown</subject><subject>Channels</subject><subject>Current leakage</subject><subject>Design engineering</subject><subject>Electric potential</subject><subject>Gates</subject><subject>Voltage</subject><issn>0022-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjstOw0AMRWcBEuXxC8jLZpFm8mgzLCvUUhbsuq-c4KQDk5kwTsrj7_gziBoBWyRL1zr2vbYQ17GcxVKpSMokCdM8yaNsESVDZd_oREx-BmfinPlJSjlfqHgiPtdYeF1ip50FtI9Q7tFj2ZHXH0foKujIsjYE9xa4L6ZylgZLM7Z5sGQo0HtN_hjgmtYTsz78MeTBHf56ebhiLRloN6uHLcMeD9rWQG-dp4bMOxj3CjV2BIbwGWuCyvkBhtZpJsC2NePTfClOKzRMV6NeiOl6tb3dhK13Lz1xt2s0l2QMWnI97-IsuVEqVXKe_mP1C95nbqE</recordid><startdate>20130703</startdate><enddate>20130703</enddate><creator>Packeer, F</creator><creator>Isa, M M</creator><creator>Jubadi, WM</creator><creator>Ian, K W</creator><creator>Missous, M</creator><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130703</creationdate><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><author>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_14298838053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barriers</topic><topic>Breakdown</topic><topic>Channels</topic><topic>Current leakage</topic><topic>Design engineering</topic><topic>Electric potential</topic><topic>Gates</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Packeer, F</creatorcontrib><creatorcontrib>Isa, M M</creatorcontrib><creatorcontrib>Jubadi, WM</creatorcontrib><creatorcontrib>Ian, K W</creatorcontrib><creatorcontrib>Missous, M</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Packeer, F</au><au>Isa, M M</au><au>Jubadi, WM</au><au>Ian, K W</au><au>Missous, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2013-07-03</date><risdate>2013</risdate><volume>46</volume><issue>26</issue><spage>264002</spage><epage>1-7</epage><pages>264002-1-7</pages><issn>0022-3727</issn><abstract>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</abstract><doi>10.1088/0022-3727/46/26/264002</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2013-07, Vol.46 (26), p.264002-1-7
issn 0022-3727
language eng
recordid cdi_proquest_miscellaneous_1429883805
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Barriers
Breakdown
Channels
Current leakage
Design engineering
Electric potential
Gates
Voltage
title Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20tensile%20In%20sub(0.3)Al%20sub(0.7)As%20barrier%20and%20compressive%20In%20sub(0.7)Ga%20sub(0.3)As%20channel%20pHEMTs%20having%20extremely%20low%20gate%20leakage%20for%20low-noise%20applications&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Packeer,%20F&rft.date=2013-07-03&rft.volume=46&rft.issue=26&rft.spage=264002&rft.epage=1-7&rft.pages=264002-1-7&rft.issn=0022-3727&rft_id=info:doi/10.1088/0022-3727/46/26/264002&rft_dat=%3Cproquest%3E1429883805%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429883805&rft_id=info:pmid/&rfr_iscdi=true