Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications
This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Sc...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2013-07, Vol.46 (26), p.264002-1-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1-7 |
---|---|
container_issue | 26 |
container_start_page | 264002 |
container_title | Journal of physics. D, Applied physics |
container_volume | 46 |
creator | Packeer, F Isa, M M Jubadi, WM Ian, K W Missous, M |
description | This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices. |
doi_str_mv | 10.1088/0022-3727/46/26/264002 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429883805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429883805</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_14298838053</originalsourceid><addsrcrecordid>eNqVjstOw0AMRWcBEuXxC8jLZpFm8mgzLCvUUhbsuq-c4KQDk5kwTsrj7_gziBoBWyRL1zr2vbYQ17GcxVKpSMokCdM8yaNsESVDZd_oREx-BmfinPlJSjlfqHgiPtdYeF1ip50FtI9Q7tFj2ZHXH0foKujIsjYE9xa4L6ZylgZLM7Z5sGQo0HtN_hjgmtYTsz78MeTBHf56ebhiLRloN6uHLcMeD9rWQG-dp4bMOxj3CjV2BIbwGWuCyvkBhtZpJsC2NePTfClOKzRMV6NeiOl6tb3dhK13Lz1xt2s0l2QMWnI97-IsuVEqVXKe_mP1C95nbqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429883805</pqid></control><display><type>article</type><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</creator><creatorcontrib>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</creatorcontrib><description>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</description><identifier>ISSN: 0022-3727</identifier><identifier>DOI: 10.1088/0022-3727/46/26/264002</identifier><language>eng</language><subject>Barriers ; Breakdown ; Channels ; Current leakage ; Design engineering ; Electric potential ; Gates ; Voltage</subject><ispartof>Journal of physics. D, Applied physics, 2013-07, Vol.46 (26), p.264002-1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Packeer, F</creatorcontrib><creatorcontrib>Isa, M M</creatorcontrib><creatorcontrib>Jubadi, WM</creatorcontrib><creatorcontrib>Ian, K W</creatorcontrib><creatorcontrib>Missous, M</creatorcontrib><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><title>Journal of physics. D, Applied physics</title><description>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</description><subject>Barriers</subject><subject>Breakdown</subject><subject>Channels</subject><subject>Current leakage</subject><subject>Design engineering</subject><subject>Electric potential</subject><subject>Gates</subject><subject>Voltage</subject><issn>0022-3727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjstOw0AMRWcBEuXxC8jLZpFm8mgzLCvUUhbsuq-c4KQDk5kwTsrj7_gziBoBWyRL1zr2vbYQ17GcxVKpSMokCdM8yaNsESVDZd_oREx-BmfinPlJSjlfqHgiPtdYeF1ip50FtI9Q7tFj2ZHXH0foKujIsjYE9xa4L6ZylgZLM7Z5sGQo0HtN_hjgmtYTsz78MeTBHf56ebhiLRloN6uHLcMeD9rWQG-dp4bMOxj3CjV2BIbwGWuCyvkBhtZpJsC2NePTfClOKzRMV6NeiOl6tb3dhK13Lz1xt2s0l2QMWnI97-IsuVEqVXKe_mP1C95nbqE</recordid><startdate>20130703</startdate><enddate>20130703</enddate><creator>Packeer, F</creator><creator>Isa, M M</creator><creator>Jubadi, WM</creator><creator>Ian, K W</creator><creator>Missous, M</creator><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130703</creationdate><title>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</title><author>Packeer, F ; Isa, M M ; Jubadi, WM ; Ian, K W ; Missous, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_14298838053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barriers</topic><topic>Breakdown</topic><topic>Channels</topic><topic>Current leakage</topic><topic>Design engineering</topic><topic>Electric potential</topic><topic>Gates</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Packeer, F</creatorcontrib><creatorcontrib>Isa, M M</creatorcontrib><creatorcontrib>Jubadi, WM</creatorcontrib><creatorcontrib>Ian, K W</creatorcontrib><creatorcontrib>Missous, M</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Packeer, F</au><au>Isa, M M</au><au>Jubadi, WM</au><au>Ian, K W</au><au>Missous, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2013-07-03</date><risdate>2013</risdate><volume>46</volume><issue>26</issue><spage>264002</spage><epage>1-7</epage><pages>264002-1-7</pages><issn>0022-3727</issn><abstract>This study focuses on the area of the epitaxial design, fabrication and characterization of a 1 mu m gate-length InP-based pseudomorphic high electron mobility transistor (pHEMT) using InGaAs-InAlAs material systems. The advanced epitaxial layer design incorporates a highly strained aluminum-rich Schottky contact barrier, an indium-rich channel and a double delta-doped structure, which significantly improves upon the conventional low-noise pHEMT which suffers from high gate current leakage and low breakdown voltage. The outstanding achievements of the new design approach are 99% less gate current leakage and a 73% increase in breakdown voltage, compared with the conventional design. Furthermore, no degradation in RF performance is observed in terms of the cut-off frequency in this new highly tensile strained design. The remarkable performance of this advanced pHEMT design facilitates the implementation of outstanding low-noise devices.</abstract><doi>10.1088/0022-3727/46/26/264002</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2013-07, Vol.46 (26), p.264002-1-7 |
issn | 0022-3727 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429883805 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Barriers Breakdown Channels Current leakage Design engineering Electric potential Gates Voltage |
title | Fabrication and characterization of tensile In sub(0.3)Al sub(0.7)As barrier and compressive In sub(0.7)Ga sub(0.3)As channel pHEMTs having extremely low gate leakage for low-noise applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20characterization%20of%20tensile%20In%20sub(0.3)Al%20sub(0.7)As%20barrier%20and%20compressive%20In%20sub(0.7)Ga%20sub(0.3)As%20channel%20pHEMTs%20having%20extremely%20low%20gate%20leakage%20for%20low-noise%20applications&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Packeer,%20F&rft.date=2013-07-03&rft.volume=46&rft.issue=26&rft.spage=264002&rft.epage=1-7&rft.pages=264002-1-7&rft.issn=0022-3727&rft_id=info:doi/10.1088/0022-3727/46/26/264002&rft_dat=%3Cproquest%3E1429883805%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429883805&rft_id=info:pmid/&rfr_iscdi=true |