Dodecanoic acid as a promising phase-change material for thermal energy storage

The melting transition of dodecanoic acid (CH3(CH2)10COOH, also known as lauric acid) has been examined with a view to use for latent heat energy storage in solar thermal applications. The influence of purity (reagent grade [98% pure] compared with practical grade [

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2013-04, Vol.53 (1), p.37-41
Hauptverfasser: Desgrosseilliers, Louis, Whitman, Catherine A., Groulx, Dominic, White, Mary Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 37
container_title Applied thermal engineering
container_volume 53
creator Desgrosseilliers, Louis
Whitman, Catherine A.
Groulx, Dominic
White, Mary Anne
description The melting transition of dodecanoic acid (CH3(CH2)10COOH, also known as lauric acid) has been examined with a view to use for latent heat energy storage in solar thermal applications. The influence of purity (reagent grade [98% pure] compared with practical grade [
doi_str_mv 10.1016/j.applthermaleng.2012.12.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429861569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113000057</els_id><sourcerecordid>1429861569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a491e2bffd80365e4a8df38b3ca129bf75e25f72e18e653cbff3e6747b02c1073</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhnNQsH78hxwUvOyaj_0EL1KtCoVe9Bxms5NtynazJluh_96UFsGbMDCHeWbed15CbjlLOePFwyaFceynNfot9Dh0qWBcpLGY5GdkxmVeJ5nk_IJchrBhcViV2Yysnl2LGgZnNQVtWwqBAh2929pgh46OawiY6DUMHdItTOgt9NQ4T09SFAf03Z6GyXno8JqcG-gD3pz6FflcvHzM35Ll6vV9_rRMtKzllEBWcxSNMW3FZJFjBlVrZNVIDVzUjSlzFLkpBfIKi1zqSEosyqxsmNCclfKK3B_vRqtfOwyTioY19j0M6HZB8UzUVcHzoo7o4xHV3oXg0ajR2y34veJMHbJTG_U3O3XITsWK2cX1u5MSBA298TBoG35viJJXuSiKyC2OHMa3vy16FbTFQWNrPepJtc7-T_AHNvKQcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429861569</pqid></control><display><type>article</type><title>Dodecanoic acid as a promising phase-change material for thermal energy storage</title><source>Access via ScienceDirect (Elsevier)</source><creator>Desgrosseilliers, Louis ; Whitman, Catherine A. ; Groulx, Dominic ; White, Mary Anne</creator><creatorcontrib>Desgrosseilliers, Louis ; Whitman, Catherine A. ; Groulx, Dominic ; White, Mary Anne</creatorcontrib><description>The melting transition of dodecanoic acid (CH3(CH2)10COOH, also known as lauric acid) has been examined with a view to use for latent heat energy storage in solar thermal applications. The influence of purity (reagent grade [98% pure] compared with practical grade [&lt;80% pure]) on the melting transition was found to be insignificant. The long-term stability of the melting transition of practical-grade dodecanoic acid was investigated by thermal cycling of samples from completely solid through complete melting and back to the solid phase, nearly 500 times. It was found that the transition enthalpy and the melting onset temperature remain within experimental uncertainty of their values, 184 J g−1 and 43.3 °C, respectively. Neither data set showed significant trends with number of thermal cycles. The freezing temperature of 41 °C for practical-grade dodecanoic acid also was stable with respect to thermal cycling, showing almost negligible hysteresis, without addition of nucleating agents. The specific heat in the region of the phase transition was determined, along with the thermal conductivity in the solid state (0.150 ± 0.004 W m−1 K−1 at 30 °C) and the volume change associated with melting (6%). Although the thermal conductivity of dodecanoic acid is low in both the solid phase and liquid phase, and thermal energy storage devices would need to be designed accordingly, dodecanoic acid is inexpensive, readily available (used as a foodstuff), has a low volume change on melting, and is stable over hundreds of thermal cycles even in practical grade, making it a promising phase-change material for thermal energy storage. ► Dodecanoic acid's phase transition properties do not change when &lt;80% pure. ► Dodecanoic acid is found to undergo only a small (6%) volume change on melting. ► Melting of &lt;80% pure dodecanoic acid does not degrade after nearly 500 cycles.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2012.12.031</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Dodecanoic acid ; Energy ; Energy storage ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat storage ; Heat transfer ; Lauric acid ; Melting ; Phase-change material ; Solid phases ; Theoretical studies. Data and constants. Metering ; Thermal conductivity ; Thermal cycling ; Thermal energy ; Thermal engineering ; Transport and storage of energy</subject><ispartof>Applied thermal engineering, 2013-04, Vol.53 (1), p.37-41</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a491e2bffd80365e4a8df38b3ca129bf75e25f72e18e653cbff3e6747b02c1073</citedby><cites>FETCH-LOGICAL-c393t-a491e2bffd80365e4a8df38b3ca129bf75e25f72e18e653cbff3e6747b02c1073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2012.12.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27185266$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Desgrosseilliers, Louis</creatorcontrib><creatorcontrib>Whitman, Catherine A.</creatorcontrib><creatorcontrib>Groulx, Dominic</creatorcontrib><creatorcontrib>White, Mary Anne</creatorcontrib><title>Dodecanoic acid as a promising phase-change material for thermal energy storage</title><title>Applied thermal engineering</title><description>The melting transition of dodecanoic acid (CH3(CH2)10COOH, also known as lauric acid) has been examined with a view to use for latent heat energy storage in solar thermal applications. The influence of purity (reagent grade [98% pure] compared with practical grade [&lt;80% pure]) on the melting transition was found to be insignificant. The long-term stability of the melting transition of practical-grade dodecanoic acid was investigated by thermal cycling of samples from completely solid through complete melting and back to the solid phase, nearly 500 times. It was found that the transition enthalpy and the melting onset temperature remain within experimental uncertainty of their values, 184 J g−1 and 43.3 °C, respectively. Neither data set showed significant trends with number of thermal cycles. The freezing temperature of 41 °C for practical-grade dodecanoic acid also was stable with respect to thermal cycling, showing almost negligible hysteresis, without addition of nucleating agents. The specific heat in the region of the phase transition was determined, along with the thermal conductivity in the solid state (0.150 ± 0.004 W m−1 K−1 at 30 °C) and the volume change associated with melting (6%). Although the thermal conductivity of dodecanoic acid is low in both the solid phase and liquid phase, and thermal energy storage devices would need to be designed accordingly, dodecanoic acid is inexpensive, readily available (used as a foodstuff), has a low volume change on melting, and is stable over hundreds of thermal cycles even in practical grade, making it a promising phase-change material for thermal energy storage. ► Dodecanoic acid's phase transition properties do not change when &lt;80% pure. ► Dodecanoic acid is found to undergo only a small (6%) volume change on melting. ► Melting of &lt;80% pure dodecanoic acid does not degrade after nearly 500 cycles.</description><subject>Applied sciences</subject><subject>Dodecanoic acid</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Lauric acid</subject><subject>Melting</subject><subject>Phase-change material</subject><subject>Solid phases</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal conductivity</subject><subject>Thermal cycling</subject><subject>Thermal energy</subject><subject>Thermal engineering</subject><subject>Transport and storage of energy</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhnNQsH78hxwUvOyaj_0EL1KtCoVe9Bxms5NtynazJluh_96UFsGbMDCHeWbed15CbjlLOePFwyaFceynNfot9Dh0qWBcpLGY5GdkxmVeJ5nk_IJchrBhcViV2Yysnl2LGgZnNQVtWwqBAh2929pgh46OawiY6DUMHdItTOgt9NQ4T09SFAf03Z6GyXno8JqcG-gD3pz6FflcvHzM35Ll6vV9_rRMtKzllEBWcxSNMW3FZJFjBlVrZNVIDVzUjSlzFLkpBfIKi1zqSEosyqxsmNCclfKK3B_vRqtfOwyTioY19j0M6HZB8UzUVcHzoo7o4xHV3oXg0ajR2y34veJMHbJTG_U3O3XITsWK2cX1u5MSBA298TBoG35viJJXuSiKyC2OHMa3vy16FbTFQWNrPepJtc7-T_AHNvKQcw</recordid><startdate>20130429</startdate><enddate>20130429</enddate><creator>Desgrosseilliers, Louis</creator><creator>Whitman, Catherine A.</creator><creator>Groulx, Dominic</creator><creator>White, Mary Anne</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130429</creationdate><title>Dodecanoic acid as a promising phase-change material for thermal energy storage</title><author>Desgrosseilliers, Louis ; Whitman, Catherine A. ; Groulx, Dominic ; White, Mary Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a491e2bffd80365e4a8df38b3ca129bf75e25f72e18e653cbff3e6747b02c1073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Dodecanoic acid</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Lauric acid</topic><topic>Melting</topic><topic>Phase-change material</topic><topic>Solid phases</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal conductivity</topic><topic>Thermal cycling</topic><topic>Thermal energy</topic><topic>Thermal engineering</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desgrosseilliers, Louis</creatorcontrib><creatorcontrib>Whitman, Catherine A.</creatorcontrib><creatorcontrib>Groulx, Dominic</creatorcontrib><creatorcontrib>White, Mary Anne</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desgrosseilliers, Louis</au><au>Whitman, Catherine A.</au><au>Groulx, Dominic</au><au>White, Mary Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dodecanoic acid as a promising phase-change material for thermal energy storage</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-04-29</date><risdate>2013</risdate><volume>53</volume><issue>1</issue><spage>37</spage><epage>41</epage><pages>37-41</pages><issn>1359-4311</issn><abstract>The melting transition of dodecanoic acid (CH3(CH2)10COOH, also known as lauric acid) has been examined with a view to use for latent heat energy storage in solar thermal applications. The influence of purity (reagent grade [98% pure] compared with practical grade [&lt;80% pure]) on the melting transition was found to be insignificant. The long-term stability of the melting transition of practical-grade dodecanoic acid was investigated by thermal cycling of samples from completely solid through complete melting and back to the solid phase, nearly 500 times. It was found that the transition enthalpy and the melting onset temperature remain within experimental uncertainty of their values, 184 J g−1 and 43.3 °C, respectively. Neither data set showed significant trends with number of thermal cycles. The freezing temperature of 41 °C for practical-grade dodecanoic acid also was stable with respect to thermal cycling, showing almost negligible hysteresis, without addition of nucleating agents. The specific heat in the region of the phase transition was determined, along with the thermal conductivity in the solid state (0.150 ± 0.004 W m−1 K−1 at 30 °C) and the volume change associated with melting (6%). Although the thermal conductivity of dodecanoic acid is low in both the solid phase and liquid phase, and thermal energy storage devices would need to be designed accordingly, dodecanoic acid is inexpensive, readily available (used as a foodstuff), has a low volume change on melting, and is stable over hundreds of thermal cycles even in practical grade, making it a promising phase-change material for thermal energy storage. ► Dodecanoic acid's phase transition properties do not change when &lt;80% pure. ► Dodecanoic acid is found to undergo only a small (6%) volume change on melting. ► Melting of &lt;80% pure dodecanoic acid does not degrade after nearly 500 cycles.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2012.12.031</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2013-04, Vol.53 (1), p.37-41
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_1429861569
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Dodecanoic acid
Energy
Energy storage
Energy. Thermal use of fuels
Exact sciences and technology
Heat storage
Heat transfer
Lauric acid
Melting
Phase-change material
Solid phases
Theoretical studies. Data and constants. Metering
Thermal conductivity
Thermal cycling
Thermal energy
Thermal engineering
Transport and storage of energy
title Dodecanoic acid as a promising phase-change material for thermal energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dodecanoic%20acid%20as%20a%20promising%20phase-change%20material%20for%20thermal%20energy%20storage&rft.jtitle=Applied%20thermal%20engineering&rft.au=Desgrosseilliers,%20Louis&rft.date=2013-04-29&rft.volume=53&rft.issue=1&rft.spage=37&rft.epage=41&rft.pages=37-41&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2012.12.031&rft_dat=%3Cproquest_cross%3E1429861569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429861569&rft_id=info:pmid/&rft_els_id=S1359431113000057&rfr_iscdi=true