Nature of the anomalies in the supercooled liquid state of the mW model of water
The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid)...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2013-05, Vol.138 (17), p.174501-174501 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174501 |
---|---|
container_issue | 17 |
container_start_page | 174501 |
container_title | The Journal of chemical physics |
container_volume | 138 |
creator | Holten, Vincent Limmer, David T Molinero, Valeria Anisimov, Mikhail A |
description | The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results. |
doi_str_mv | 10.1063/1.4802992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429857537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429857537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f19244de8e79d5335db60b3212dd05f30312ccbb88107f3e5c8fb01b702752723</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqUw8AdQRhhS7s5xbI-o4kuqgAHEGCWxLYKSurUTIf49LS1dmU736rlXp4exc4QpQs6vcZopIK3pgI0RlE5lruGQjQEIU51DPmInMX4CAErKjtmIeC5y5GrMXp7Kfgg28S7pP2xSLnxXto2NSbP4DeKwtKH2vrUmaZvV0Jgk9mW_P-jek84b2272r3UeTtmRK9toz3Zzwt7ubl9nD-n8-f5xdjNP6wx1nzrUlGXGKiu1EZwLU-VQcUIyBoTjwJHquqqUQpCOW1ErVwFWEkgKksQn7HLbuwx-NdjYF10Ta9u25cL6IRaYkVZCCi7_R7kAFETrNybsaovWwccYrCuWoenK8F0gFBvXBRY712v2Ylc7VJ01e_JPLv8BMeh2lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350152253</pqid></control><display><type>article</type><title>Nature of the anomalies in the supercooled liquid state of the mW model of water</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Holten, Vincent ; Limmer, David T ; Molinero, Valeria ; Anisimov, Mikhail A</creator><creatorcontrib>Holten, Vincent ; Limmer, David T ; Molinero, Valeria ; Anisimov, Mikhail A</creatorcontrib><description>The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4802992</identifier><identifier>PMID: 23656138</identifier><language>eng</language><publisher>United States</publisher><subject>Anomalies ; Compressibility ; Computer simulation ; Crystallization ; Liquids ; Mathematical models ; Phase separation ; Thermodynamic properties</subject><ispartof>The Journal of chemical physics, 2013-05, Vol.138 (17), p.174501-174501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f19244de8e79d5335db60b3212dd05f30312ccbb88107f3e5c8fb01b702752723</citedby><cites>FETCH-LOGICAL-c419t-f19244de8e79d5335db60b3212dd05f30312ccbb88107f3e5c8fb01b702752723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23656138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holten, Vincent</creatorcontrib><creatorcontrib>Limmer, David T</creatorcontrib><creatorcontrib>Molinero, Valeria</creatorcontrib><creatorcontrib>Anisimov, Mikhail A</creatorcontrib><title>Nature of the anomalies in the supercooled liquid state of the mW model of water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.</description><subject>Anomalies</subject><subject>Compressibility</subject><subject>Computer simulation</subject><subject>Crystallization</subject><subject>Liquids</subject><subject>Mathematical models</subject><subject>Phase separation</subject><subject>Thermodynamic properties</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EoqUw8AdQRhhS7s5xbI-o4kuqgAHEGCWxLYKSurUTIf49LS1dmU736rlXp4exc4QpQs6vcZopIK3pgI0RlE5lruGQjQEIU51DPmInMX4CAErKjtmIeC5y5GrMXp7Kfgg28S7pP2xSLnxXto2NSbP4DeKwtKH2vrUmaZvV0Jgk9mW_P-jek84b2272r3UeTtmRK9toz3Zzwt7ubl9nD-n8-f5xdjNP6wx1nzrUlGXGKiu1EZwLU-VQcUIyBoTjwJHquqqUQpCOW1ErVwFWEkgKksQn7HLbuwx-NdjYF10Ta9u25cL6IRaYkVZCCi7_R7kAFETrNybsaovWwccYrCuWoenK8F0gFBvXBRY712v2Ylc7VJ01e_JPLv8BMeh2lA</recordid><startdate>20130507</startdate><enddate>20130507</enddate><creator>Holten, Vincent</creator><creator>Limmer, David T</creator><creator>Molinero, Valeria</creator><creator>Anisimov, Mikhail A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130507</creationdate><title>Nature of the anomalies in the supercooled liquid state of the mW model of water</title><author>Holten, Vincent ; Limmer, David T ; Molinero, Valeria ; Anisimov, Mikhail A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f19244de8e79d5335db60b3212dd05f30312ccbb88107f3e5c8fb01b702752723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anomalies</topic><topic>Compressibility</topic><topic>Computer simulation</topic><topic>Crystallization</topic><topic>Liquids</topic><topic>Mathematical models</topic><topic>Phase separation</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holten, Vincent</creatorcontrib><creatorcontrib>Limmer, David T</creatorcontrib><creatorcontrib>Molinero, Valeria</creatorcontrib><creatorcontrib>Anisimov, Mikhail A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holten, Vincent</au><au>Limmer, David T</au><au>Molinero, Valeria</au><au>Anisimov, Mikhail A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nature of the anomalies in the supercooled liquid state of the mW model of water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-05-07</date><risdate>2013</risdate><volume>138</volume><issue>17</issue><spage>174501</spage><epage>174501</epage><pages>174501-174501</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.</abstract><cop>United States</cop><pmid>23656138</pmid><doi>10.1063/1.4802992</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-05, Vol.138 (17), p.174501-174501 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429857537 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Anomalies Compressibility Computer simulation Crystallization Liquids Mathematical models Phase separation Thermodynamic properties |
title | Nature of the anomalies in the supercooled liquid state of the mW model of water |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nature%20of%20the%20anomalies%20in%20the%20supercooled%20liquid%20state%20of%20the%20mW%20model%20of%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Holten,%20Vincent&rft.date=2013-05-07&rft.volume=138&rft.issue=17&rft.spage=174501&rft.epage=174501&rft.pages=174501-174501&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4802992&rft_dat=%3Cproquest_cross%3E1429857537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350152253&rft_id=info:pmid/23656138&rfr_iscdi=true |