About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation

New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n), n = 1, …, N are constructed via Zakharov and Manakov \documentclass[12pt]{minimal}\begin{document}$\o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2013-03, Vol.54 (3), p.1
Hauptverfasser: Dubrovsky, V. G., Topovsky, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 1
container_title Journal of mathematical physics
container_volume 54
creator Dubrovsky, V. G.
Topovsky, A. V.
description New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n), n = 1, …, N are constructed via Zakharov and Manakov \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n). It is shown that the sums \documentclass[12pt]{minimal}\begin{document}$u= u^{(k_1)}+\ldots + u^{(k_m)}$\end{document} u = u ( k 1 ) + ... + u ( k m ) , 1 ⩽ k 1 < k 2 < … < k m ⩽ N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
doi_str_mv 10.1063/1.4795132
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429857210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932686181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-9584570a6f25fc8ed83aa54a137647819fbd190cc9208f0cc31220de643c9a8e3</originalsourceid><addsrcrecordid>eNqd0c9LwzAUB_AgCs7pwf-g4EWFzvxqmx7H8BcMvajXkKWvmtklXdIW_e9t7Zh3Ty_wPvmSvIfQOcEzglN2Q2Y8yxPC6AGaECzyOEsTcYgmGFMaUy7EMToJYY0xIYLzCXqfr1zbRMFs6goi62xlLCgfKVtEu2Noa_C1C6YxzobIlVGoQRtVRfCldH_XVe2-9QYBKtfFT64zn66LYNuqoXmKjkpVBTjb1Sl6vbt9WTzEy-f7x8V8GWsmRBPnieBJhlVa0qTUAgrBlEq4IixLeSZIXq4KkmOtc4pF2VdGKMUFpJzpXAlgU3Qx5rrQGBm0aUB_aGct6EZSSlIqKOvV5ahq77YthEZuTNBQVcqCa4MknOYiySjBf4F7unatt_0fZD_lXuBUDIFXo9LeheChlLU3G-W_JcFyWIwkcreY3l6Pdnjd73D-hzvn_6Csi5L9AFVOm84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1322100683</pqid></control><display><type>article</type><title>About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Dubrovsky, V. G. ; Topovsky, A. V.</creator><creatorcontrib>Dubrovsky, V. G. ; Topovsky, A. V.</creatorcontrib><description>New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n), n = 1, …, N are constructed via Zakharov and Manakov \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n). It is shown that the sums \documentclass[12pt]{minimal}\begin{document}$u= u^{(k_1)}+\ldots + u^{(k_m)}$\end{document} u = u ( k 1 ) + ... + u ( k m ) , 1 ⩽ k 1 &lt; k 2 &lt; … &lt; k m ⩽ N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.4795132</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Construction ; Electronics ; ELECTRONS ; ENERGY LEVELS ; EXACT SOLUTIONS ; Mathematical analysis ; Mathematical models ; Mathematical problems ; NONLINEAR PROBLEMS ; Nonlinearity ; Numerical analysis ; PERIODICITY ; Quantum physics ; Schrodinger equation ; SCHROEDINGER EQUATION ; SOLITONS ; Sums ; Two dimensional ; WAVE PROPAGATION</subject><ispartof>Journal of mathematical physics, 2013-03, Vol.54 (3), p.1</ispartof><rights>American Institute of Physics</rights><rights>Copyright American Institute of Physics Mar 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-9584570a6f25fc8ed83aa54a137647819fbd190cc9208f0cc31220de643c9a8e3</citedby><cites>FETCH-LOGICAL-c388t-9584570a6f25fc8ed83aa54a137647819fbd190cc9208f0cc31220de643c9a8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.4795132$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1558,4510,27923,27924,76155,76161</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22162823$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubrovsky, V. G.</creatorcontrib><creatorcontrib>Topovsky, A. V.</creatorcontrib><title>About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation</title><title>Journal of mathematical physics</title><description>New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n), n = 1, …, N are constructed via Zakharov and Manakov \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n). It is shown that the sums \documentclass[12pt]{minimal}\begin{document}$u= u^{(k_1)}+\ldots + u^{(k_m)}$\end{document} u = u ( k 1 ) + ... + u ( k m ) , 1 ⩽ k 1 &lt; k 2 &lt; … &lt; k m ⩽ N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Construction</subject><subject>Electronics</subject><subject>ELECTRONS</subject><subject>ENERGY LEVELS</subject><subject>EXACT SOLUTIONS</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>NONLINEAR PROBLEMS</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>PERIODICITY</subject><subject>Quantum physics</subject><subject>Schrodinger equation</subject><subject>SCHROEDINGER EQUATION</subject><subject>SOLITONS</subject><subject>Sums</subject><subject>Two dimensional</subject><subject>WAVE PROPAGATION</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqd0c9LwzAUB_AgCs7pwf-g4EWFzvxqmx7H8BcMvajXkKWvmtklXdIW_e9t7Zh3Ty_wPvmSvIfQOcEzglN2Q2Y8yxPC6AGaECzyOEsTcYgmGFMaUy7EMToJYY0xIYLzCXqfr1zbRMFs6goi62xlLCgfKVtEu2Noa_C1C6YxzobIlVGoQRtVRfCldH_XVe2-9QYBKtfFT64zn66LYNuqoXmKjkpVBTjb1Sl6vbt9WTzEy-f7x8V8GWsmRBPnieBJhlVa0qTUAgrBlEq4IixLeSZIXq4KkmOtc4pF2VdGKMUFpJzpXAlgU3Qx5rrQGBm0aUB_aGct6EZSSlIqKOvV5ahq77YthEZuTNBQVcqCa4MknOYiySjBf4F7unatt_0fZD_lXuBUDIFXo9LeheChlLU3G-W_JcFyWIwkcreY3l6Pdnjd73D-hzvn_6Csi5L9AFVOm84</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Dubrovsky, V. G.</creator><creator>Topovsky, A. V.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130301</creationdate><title>About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation</title><author>Dubrovsky, V. G. ; Topovsky, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-9584570a6f25fc8ed83aa54a137647819fbd190cc9208f0cc31220de643c9a8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Construction</topic><topic>Electronics</topic><topic>ELECTRONS</topic><topic>ENERGY LEVELS</topic><topic>EXACT SOLUTIONS</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>NONLINEAR PROBLEMS</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>PERIODICITY</topic><topic>Quantum physics</topic><topic>Schrodinger equation</topic><topic>SCHROEDINGER EQUATION</topic><topic>SOLITONS</topic><topic>Sums</topic><topic>Two dimensional</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubrovsky, V. G.</creatorcontrib><creatorcontrib>Topovsky, A. V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubrovsky, V. G.</au><au>Topovsky, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation</atitle><jtitle>Journal of mathematical physics</jtitle><date>2013-03-01</date><risdate>2013</risdate><volume>54</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u (n), n = 1, …, N are constructed via Zakharov and Manakov \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u (n) and calculated by \documentclass[12pt]{minimal}\begin{document}$\overline{\partial }$\end{document} ∂ ¯ -dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schrödinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u (n). It is shown that the sums \documentclass[12pt]{minimal}\begin{document}$u= u^{(k_1)}+\ldots + u^{(k_m)}$\end{document} u = u ( k 1 ) + ... + u ( k m ) , 1 ⩽ k 1 &lt; k 2 &lt; … &lt; k m ⩽ N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schrödinger equation and can serve as model potentials for electrons in planar structures of modern electronics.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4795132</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2013-03, Vol.54 (3), p.1
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_miscellaneous_1429857210
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Construction
Electronics
ELECTRONS
ENERGY LEVELS
EXACT SOLUTIONS
Mathematical analysis
Mathematical models
Mathematical problems
NONLINEAR PROBLEMS
Nonlinearity
Numerical analysis
PERIODICITY
Quantum physics
Schrodinger equation
SCHROEDINGER EQUATION
SOLITONS
Sums
Two dimensional
WAVE PROPAGATION
title About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A30%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20simple%20nonlinear%20and%20linear%20superpositions%20of%20special%20exact%20solutions%20of%20Veselov-Novikov%20equation&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Dubrovsky,%20V.%20G.&rft.date=2013-03-01&rft.volume=54&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.4795132&rft_dat=%3Cproquest_scita%3E2932686181%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1322100683&rft_id=info:pmid/&rfr_iscdi=true