Integration of nanoscale memristor synapses in neuromorphic computing architectures

Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2013-09, Vol.24 (38), p.384010-384010
Hauptverfasser: Indiveri, Giacomo, Linares-Barranco, Bernabé, Legenstein, Robert, Deligeorgis, George, Prodromakis, Themistoklis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384010
container_issue 38
container_start_page 384010
container_title Nanotechnology
container_volume 24
creator Indiveri, Giacomo
Linares-Barranco, Bernabé
Legenstein, Robert
Deligeorgis, George
Prodromakis, Themistoklis
description Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.
doi_str_mv 10.1088/0957-4484/24/38/384010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429847177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464557774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-d65375ed1420d575d8101bc56b555122c593c4777c1e6ea8fed9b8794871fb193</originalsourceid><addsrcrecordid>eNqNkE1LJDEQhoO46Kz6F6Qvgpd2UvnoJEcR3RWEPex6Dul0tUamkzbpPvjv7WFGPbpQUJfnfat4CDkHegVU6zU1UtVCaLFmYs31MoICPSAr4A3UjWT6kKw-oWPys5QXSgE0gyNyzLgxhmtYkb_3ccKn7KaQYpX6KrqYincbrAYccihTylV5i24sWKoQq4hzTkPK43PwlU_DOE8hPlUu--cwoZ_mjOWU_OjdpuDZfp-Qx7vbfze_64c_v-5vrh9qLzlMdddIriR2IBjtpJKdBgqtl00rpQTGvDTcC6WUB2zQ6R4702plhFbQt2D4Cbnc9Y45vc5YJjuE4nGzcRHTXCyIRki5FIj_QJnRQoFSC9rsUJ9TKRl7O-YwuPxmgdqte7vVardaLROWa7tzvwTP9zfmdsDuM_YhewEu9oDbKu6ziz6UL275VHIqF47tuJBG-5LmHBeL311_Bwsom0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429847177</pqid></control><display><type>article</type><title>Integration of nanoscale memristor synapses in neuromorphic computing architectures</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Indiveri, Giacomo ; Linares-Barranco, Bernabé ; Legenstein, Robert ; Deligeorgis, George ; Prodromakis, Themistoklis</creator><creatorcontrib>Indiveri, Giacomo ; Linares-Barranco, Bernabé ; Legenstein, Robert ; Deligeorgis, George ; Prodromakis, Themistoklis</creatorcontrib><description>Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/0957-4484/24/38/384010</identifier><identifier>PMID: 23999381</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Architecture ; Biological ; Circuit design ; Condensed matter: structure, mechanical and thermal properties ; Electronics - instrumentation ; Equipment Design ; Exact sciences and technology ; Fault tolerance ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Models, Neurological ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology - instrumentation ; Neural Networks (Computer) ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Synapses</subject><ispartof>Nanotechnology, 2013-09, Vol.24 (38), p.384010-384010</ispartof><rights>2013 IOP Publishing Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-d65375ed1420d575d8101bc56b555122c593c4777c1e6ea8fed9b8794871fb193</citedby><cites>FETCH-LOGICAL-c531t-d65375ed1420d575d8101bc56b555122c593c4777c1e6ea8fed9b8794871fb193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0957-4484/24/38/384010/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,53845,53892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27775305$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23999381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Indiveri, Giacomo</creatorcontrib><creatorcontrib>Linares-Barranco, Bernabé</creatorcontrib><creatorcontrib>Legenstein, Robert</creatorcontrib><creatorcontrib>Deligeorgis, George</creatorcontrib><creatorcontrib>Prodromakis, Themistoklis</creatorcontrib><title>Integration of nanoscale memristor synapses in neuromorphic computing architectures</title><title>Nanotechnology</title><addtitle>Nano</addtitle><addtitle>Nanotechnology</addtitle><description>Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.</description><subject>Architecture</subject><subject>Biological</subject><subject>Circuit design</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronics - instrumentation</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fault tolerance</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Models, Neurological</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Neural Networks (Computer)</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Synapses</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LJDEQhoO46Kz6F6Qvgpd2UvnoJEcR3RWEPex6Dul0tUamkzbpPvjv7WFGPbpQUJfnfat4CDkHegVU6zU1UtVCaLFmYs31MoICPSAr4A3UjWT6kKw-oWPys5QXSgE0gyNyzLgxhmtYkb_3ccKn7KaQYpX6KrqYincbrAYccihTylV5i24sWKoQq4hzTkPK43PwlU_DOE8hPlUu--cwoZ_mjOWU_OjdpuDZfp-Qx7vbfze_64c_v-5vrh9qLzlMdddIriR2IBjtpJKdBgqtl00rpQTGvDTcC6WUB2zQ6R4702plhFbQt2D4Cbnc9Y45vc5YJjuE4nGzcRHTXCyIRki5FIj_QJnRQoFSC9rsUJ9TKRl7O-YwuPxmgdqte7vVardaLROWa7tzvwTP9zfmdsDuM_YhewEu9oDbKu6ziz6UL275VHIqF47tuJBG-5LmHBeL311_Bwsom0U</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Indiveri, Giacomo</creator><creator>Linares-Barranco, Bernabé</creator><creator>Legenstein, Robert</creator><creator>Deligeorgis, George</creator><creator>Prodromakis, Themistoklis</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130927</creationdate><title>Integration of nanoscale memristor synapses in neuromorphic computing architectures</title><author>Indiveri, Giacomo ; Linares-Barranco, Bernabé ; Legenstein, Robert ; Deligeorgis, George ; Prodromakis, Themistoklis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-d65375ed1420d575d8101bc56b555122c593c4777c1e6ea8fed9b8794871fb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Architecture</topic><topic>Biological</topic><topic>Circuit design</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronics - instrumentation</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fault tolerance</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Models, Neurological</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Neural Networks (Computer)</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indiveri, Giacomo</creatorcontrib><creatorcontrib>Linares-Barranco, Bernabé</creatorcontrib><creatorcontrib>Legenstein, Robert</creatorcontrib><creatorcontrib>Deligeorgis, George</creatorcontrib><creatorcontrib>Prodromakis, Themistoklis</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indiveri, Giacomo</au><au>Linares-Barranco, Bernabé</au><au>Legenstein, Robert</au><au>Deligeorgis, George</au><au>Prodromakis, Themistoklis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of nanoscale memristor synapses in neuromorphic computing architectures</atitle><jtitle>Nanotechnology</jtitle><stitle>Nano</stitle><addtitle>Nanotechnology</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>24</volume><issue>38</issue><spage>384010</spage><epage>384010</epage><pages>384010-384010</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><pmid>23999381</pmid><doi>10.1088/0957-4484/24/38/384010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2013-09, Vol.24 (38), p.384010-384010
issn 0957-4484
1361-6528
language eng
recordid cdi_proquest_miscellaneous_1429847177
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Architecture
Biological
Circuit design
Condensed matter: structure, mechanical and thermal properties
Electronics - instrumentation
Equipment Design
Exact sciences and technology
Fault tolerance
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Models, Neurological
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology - instrumentation
Neural Networks (Computer)
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Synapses
title Integration of nanoscale memristor synapses in neuromorphic computing architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20nanoscale%20memristor%20synapses%20in%20neuromorphic%20computing%20architectures&rft.jtitle=Nanotechnology&rft.au=Indiveri,%20Giacomo&rft.date=2013-09-27&rft.volume=24&rft.issue=38&rft.spage=384010&rft.epage=384010&rft.pages=384010-384010&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/0957-4484/24/38/384010&rft_dat=%3Cproquest_cross%3E1464557774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429847177&rft_id=info:pmid/23999381&rfr_iscdi=true