In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons

The role of intrinsic noise on the spiking of two delay-coupled neurons is studied. ► Characteristic stochastic synchronization patterns are observed. ► The delay-coupling and intrinsic noise result in a locking of the spiking rate. ► The dynamics of the coupled neurons exhibit noise-induced phase-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2013-09, Vol.245 (1), p.49-55
Hauptverfasser: Ao, Xue, Hänggi, Peter, Schmid, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 49
container_title Mathematical biosciences
container_volume 245
creator Ao, Xue
Hänggi, Peter
Schmid, Gerhard
description The role of intrinsic noise on the spiking of two delay-coupled neurons is studied. ► Characteristic stochastic synchronization patterns are observed. ► The delay-coupling and intrinsic noise result in a locking of the spiking rate. ► The dynamics of the coupled neurons exhibit noise-induced phase-flip bifurcations. We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency.
doi_str_mv 10.1016/j.mbs.2013.02.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429638808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556413000539</els_id><sourcerecordid>1429638808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-1eba20265390074dd84f98519c212bd7b6b4804ce06a8ccf417af5ba093ef9583</originalsourceid><addsrcrecordid>eNp9kD1Ow0AQhVcIRELgADTIJY3N7J9_RIUiIJEi0UC9Wq_HZIOzDl4bYSruwA05CY4SKClGo5G-9_TmEXJOIaJA46tVtM59xIDyCFgEkByQMU2TLOSUi0MyBmAylDIWI3Li_QqAJpTGx2TEuEh4JmBM5nMXbpbaY6BdMUxr96fvnVk2tbMfurW1C6wLXG19H8zq4vnFuu_Pr1n3XmEfOOwGzp-So1JXHs_2e0Ke7m4fp7Nw8XA_n94sQsMlb0OKuWbAYsmzIbAoilSUWSppZhhleZHkcS5SEAYh1qkxpaCJLmWuIeNYZjLlE3K589009WuHvlVr6w1WlXZYd15RwbKYpylsUbpDTVN732CpNo1d66ZXFNS2QbVSQ4Nq26ACpoZAg-Zib9_layz-FL-VDcD1DsDhyTeLjfLGojNY2AZNq4ra_mP_A8WAgeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429638808</pqid></control><display><type>article</type><title>In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ao, Xue ; Hänggi, Peter ; Schmid, Gerhard</creator><creatorcontrib>Ao, Xue ; Hänggi, Peter ; Schmid, Gerhard</creatorcontrib><description>The role of intrinsic noise on the spiking of two delay-coupled neurons is studied. ► Characteristic stochastic synchronization patterns are observed. ► The delay-coupling and intrinsic noise result in a locking of the spiking rate. ► The dynamics of the coupled neurons exhibit noise-induced phase-flip bifurcations. We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2013.02.007</identifier><identifier>PMID: 23473940</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Biophysical Phenomena ; Channel noise ; Delayed coupling ; Humans ; Models, Neurological ; Neurons - physiology ; Stochastic Hodgkin–Huxley ; Stochastic Processes ; Synchronization</subject><ispartof>Mathematical biosciences, 2013-09, Vol.245 (1), p.49-55</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-1eba20265390074dd84f98519c212bd7b6b4804ce06a8ccf417af5ba093ef9583</citedby><cites>FETCH-LOGICAL-c353t-1eba20265390074dd84f98519c212bd7b6b4804ce06a8ccf417af5ba093ef9583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556413000539$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23473940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ao, Xue</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Schmid, Gerhard</creatorcontrib><title>In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>The role of intrinsic noise on the spiking of two delay-coupled neurons is studied. ► Characteristic stochastic synchronization patterns are observed. ► The delay-coupling and intrinsic noise result in a locking of the spiking rate. ► The dynamics of the coupled neurons exhibit noise-induced phase-flip bifurcations. We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency.</description><subject>Action Potentials - physiology</subject><subject>Biophysical Phenomena</subject><subject>Channel noise</subject><subject>Delayed coupling</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neurons - physiology</subject><subject>Stochastic Hodgkin–Huxley</subject><subject>Stochastic Processes</subject><subject>Synchronization</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1Ow0AQhVcIRELgADTIJY3N7J9_RIUiIJEi0UC9Wq_HZIOzDl4bYSruwA05CY4SKClGo5G-9_TmEXJOIaJA46tVtM59xIDyCFgEkByQMU2TLOSUi0MyBmAylDIWI3Li_QqAJpTGx2TEuEh4JmBM5nMXbpbaY6BdMUxr96fvnVk2tbMfurW1C6wLXG19H8zq4vnFuu_Pr1n3XmEfOOwGzp-So1JXHs_2e0Ke7m4fp7Nw8XA_n94sQsMlb0OKuWbAYsmzIbAoilSUWSppZhhleZHkcS5SEAYh1qkxpaCJLmWuIeNYZjLlE3K589009WuHvlVr6w1WlXZYd15RwbKYpylsUbpDTVN732CpNo1d66ZXFNS2QbVSQ4Nq26ACpoZAg-Zib9_layz-FL-VDcD1DsDhyTeLjfLGojNY2AZNq4ra_mP_A8WAgeA</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Ao, Xue</creator><creator>Hänggi, Peter</creator><creator>Schmid, Gerhard</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201309</creationdate><title>In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons</title><author>Ao, Xue ; Hänggi, Peter ; Schmid, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-1eba20265390074dd84f98519c212bd7b6b4804ce06a8ccf417af5ba093ef9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Biophysical Phenomena</topic><topic>Channel noise</topic><topic>Delayed coupling</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neurons - physiology</topic><topic>Stochastic Hodgkin–Huxley</topic><topic>Stochastic Processes</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ao, Xue</creatorcontrib><creatorcontrib>Hänggi, Peter</creatorcontrib><creatorcontrib>Schmid, Gerhard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ao, Xue</au><au>Hänggi, Peter</au><au>Schmid, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2013-09</date><risdate>2013</risdate><volume>245</volume><issue>1</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>The role of intrinsic noise on the spiking of two delay-coupled neurons is studied. ► Characteristic stochastic synchronization patterns are observed. ► The delay-coupling and intrinsic noise result in a locking of the spiking rate. ► The dynamics of the coupled neurons exhibit noise-induced phase-flip bifurcations. We numerically investigate the influence of intrinsic channel noise on the dynamical response of delay-coupling in neuronal systems. The stochastic dynamics of the spiking is modeled within a stochastic modification of the standard Hodgkin–Huxley model wherein the delay-coupling accounts for the finite propagation time of an action potential along the neuronal axon. We quantify this delay-coupling of the Pyragas-type in terms of the difference between corresponding presynaptic and postsynaptic membrane potentials. For an elementary neuronal network consisting of two coupled neurons we detect characteristic stochastic synchronization patterns which exhibit multiple phase-flip bifurcations: The phase-flip bifurcations occur in form of alternate transitions from an in-phase spiking activity towards an anti-phase spiking activity. Interestingly, these phase-flips remain robust for strong channel noise and in turn cause a striking stabilization of the spiking frequency.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23473940</pmid><doi>10.1016/j.mbs.2013.02.007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2013-09, Vol.245 (1), p.49-55
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_1429638808
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action Potentials - physiology
Biophysical Phenomena
Channel noise
Delayed coupling
Humans
Models, Neurological
Neurons - physiology
Stochastic Hodgkin–Huxley
Stochastic Processes
Synchronization
title In-phase and anti-phase synchronization in noisy Hodgkin–Huxley neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-phase%20and%20anti-phase%20synchronization%20in%20noisy%20Hodgkin%E2%80%93Huxley%20neurons&rft.jtitle=Mathematical%20biosciences&rft.au=Ao,%20Xue&rft.date=2013-09&rft.volume=245&rft.issue=1&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2013.02.007&rft_dat=%3Cproquest_cross%3E1429638808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429638808&rft_id=info:pmid/23473940&rft_els_id=S0025556413000539&rfr_iscdi=true