Anoxia inhibits biofilm development and modulates antibiotic activity
Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and v...
Gespeichert in:
Veröffentlicht in: | The Journal of surgical research 2013-09, Vol.184 (1), p.488-494 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 494 |
---|---|
container_issue | 1 |
container_start_page | 488 |
container_title | The Journal of surgical research |
container_volume | 184 |
creator | Hess, Donavon J., MD, PhD Henry-Stanley, Michelle J., PhD Lusczek, Elizabeth R., PhD Beilman, Gregory J., MD Wells, Carol L., PhD |
description | Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment. |
doi_str_mv | 10.1016/j.jss.2013.04.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429638264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480413004241</els_id><sourcerecordid>1429638264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</originalsourceid><addsrcrecordid>eNp9kU2L1EAQhhtR3HH1B3iRHL1krOruJB0EYVnWD1jwoJ6b_qhgxyQ9pjuD8-_tYVYPHoSCouB536LeYuwlwh4B2zfjfkxpzwHFHmSp_hHbIfRNrdpOPGY7AM5rqUBesWcpjVDmvhNP2RUXnWz7Fnfs7maJv4KpwvI92JBTZUMcwjRXno40xcNMS67M4qs5-m0ymVKZckFjDq4yLodjyKfn7MlgpkQvHvo1-_b-7uvtx_r-84dPtzf3tZOgct1L3lvhyflBGq86Owh04GVjwaDhyjhsuk4qbNA2pJxQaD0MwoOyLaAV1-z1xfewxp8bpaznkBxNk1kobkljWdAKxVtZULygbo0prTTowxpms540gj6np0dd0tPn9DTIUn3RvHqw3-xM_q_iT1wFeHsBqBx5DLTq5AItjnxYyWXtY_iv_bt_1G4KS3Bm-kEnSmPc1qWkp1EnrkF_Ob_v_D0UAJKX9hsaP5U6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429638264</pqid></control><display><type>article</type><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</creator><creatorcontrib>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</creatorcontrib><description>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2013.04.049</identifier><identifier>PMID: 23746961</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anaerobiosis - physiology ; Anoxia ; Anti-Bacterial Agents - pharmacology ; Biofilm ; Biofilms - drug effects ; Biofilms - growth & development ; Drug Resistance, Bacterial - physiology ; Equipment Contamination ; Gentamicin ; Gentamicins - pharmacology ; Metabolomics ; Normoxia ; Oxygen - pharmacology ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth & development ; Staphylococcus aureus - metabolism ; Surgery ; Sutures ; Vancomycin ; Vancomycin - pharmacology</subject><ispartof>The Journal of surgical research, 2013-09, Vol.184 (1), p.488-494</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</citedby><cites>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022480413004241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23746961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hess, Donavon J., MD, PhD</creatorcontrib><creatorcontrib>Henry-Stanley, Michelle J., PhD</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R., PhD</creatorcontrib><creatorcontrib>Beilman, Gregory J., MD</creatorcontrib><creatorcontrib>Wells, Carol L., PhD</creatorcontrib><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</description><subject>Anaerobiosis - physiology</subject><subject>Anoxia</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Biofilm</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Drug Resistance, Bacterial - physiology</subject><subject>Equipment Contamination</subject><subject>Gentamicin</subject><subject>Gentamicins - pharmacology</subject><subject>Metabolomics</subject><subject>Normoxia</subject><subject>Oxygen - pharmacology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth & development</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Surgery</subject><subject>Sutures</subject><subject>Vancomycin</subject><subject>Vancomycin - pharmacology</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2L1EAQhhtR3HH1B3iRHL1krOruJB0EYVnWD1jwoJ6b_qhgxyQ9pjuD8-_tYVYPHoSCouB536LeYuwlwh4B2zfjfkxpzwHFHmSp_hHbIfRNrdpOPGY7AM5rqUBesWcpjVDmvhNP2RUXnWz7Fnfs7maJv4KpwvI92JBTZUMcwjRXno40xcNMS67M4qs5-m0ymVKZckFjDq4yLodjyKfn7MlgpkQvHvo1-_b-7uvtx_r-84dPtzf3tZOgct1L3lvhyflBGq86Owh04GVjwaDhyjhsuk4qbNA2pJxQaD0MwoOyLaAV1-z1xfewxp8bpaznkBxNk1kobkljWdAKxVtZULygbo0prTTowxpms540gj6np0dd0tPn9DTIUn3RvHqw3-xM_q_iT1wFeHsBqBx5DLTq5AItjnxYyWXtY_iv_bt_1G4KS3Bm-kEnSmPc1qWkp1EnrkF_Ob_v_D0UAJKX9hsaP5U6</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Hess, Donavon J., MD, PhD</creator><creator>Henry-Stanley, Michelle J., PhD</creator><creator>Lusczek, Elizabeth R., PhD</creator><creator>Beilman, Gregory J., MD</creator><creator>Wells, Carol L., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><author>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anaerobiosis - physiology</topic><topic>Anoxia</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Biofilm</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Drug Resistance, Bacterial - physiology</topic><topic>Equipment Contamination</topic><topic>Gentamicin</topic><topic>Gentamicins - pharmacology</topic><topic>Metabolomics</topic><topic>Normoxia</topic><topic>Oxygen - pharmacology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth & development</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Surgery</topic><topic>Sutures</topic><topic>Vancomycin</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, Donavon J., MD, PhD</creatorcontrib><creatorcontrib>Henry-Stanley, Michelle J., PhD</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R., PhD</creatorcontrib><creatorcontrib>Beilman, Gregory J., MD</creatorcontrib><creatorcontrib>Wells, Carol L., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, Donavon J., MD, PhD</au><au>Henry-Stanley, Michelle J., PhD</au><au>Lusczek, Elizabeth R., PhD</au><au>Beilman, Gregory J., MD</au><au>Wells, Carol L., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anoxia inhibits biofilm development and modulates antibiotic activity</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>184</volume><issue>1</issue><spage>488</spage><epage>494</epage><pages>488-494</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23746961</pmid><doi>10.1016/j.jss.2013.04.049</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4804 |
ispartof | The Journal of surgical research, 2013-09, Vol.184 (1), p.488-494 |
issn | 0022-4804 1095-8673 |
language | eng |
recordid | cdi_proquest_miscellaneous_1429638264 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anaerobiosis - physiology Anoxia Anti-Bacterial Agents - pharmacology Biofilm Biofilms - drug effects Biofilms - growth & development Drug Resistance, Bacterial - physiology Equipment Contamination Gentamicin Gentamicins - pharmacology Metabolomics Normoxia Oxygen - pharmacology Staphylococcus aureus Staphylococcus aureus - drug effects Staphylococcus aureus - growth & development Staphylococcus aureus - metabolism Surgery Sutures Vancomycin Vancomycin - pharmacology |
title | Anoxia inhibits biofilm development and modulates antibiotic activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anoxia%20inhibits%20biofilm%20development%20and%20modulates%20antibiotic%20activity&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Hess,%20Donavon%20J.,%20MD,%20PhD&rft.date=2013-09-01&rft.volume=184&rft.issue=1&rft.spage=488&rft.epage=494&rft.pages=488-494&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2013.04.049&rft_dat=%3Cproquest_cross%3E1429638264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429638264&rft_id=info:pmid/23746961&rft_els_id=S0022480413004241&rfr_iscdi=true |