Anoxia inhibits biofilm development and modulates antibiotic activity

Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2013-09, Vol.184 (1), p.488-494
Hauptverfasser: Hess, Donavon J., MD, PhD, Henry-Stanley, Michelle J., PhD, Lusczek, Elizabeth R., PhD, Beilman, Gregory J., MD, Wells, Carol L., PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 494
container_issue 1
container_start_page 488
container_title The Journal of surgical research
container_volume 184
creator Hess, Donavon J., MD, PhD
Henry-Stanley, Michelle J., PhD
Lusczek, Elizabeth R., PhD
Beilman, Gregory J., MD
Wells, Carol L., PhD
description Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.
doi_str_mv 10.1016/j.jss.2013.04.049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429638264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480413004241</els_id><sourcerecordid>1429638264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</originalsourceid><addsrcrecordid>eNp9kU2L1EAQhhtR3HH1B3iRHL1krOruJB0EYVnWD1jwoJ6b_qhgxyQ9pjuD8-_tYVYPHoSCouB536LeYuwlwh4B2zfjfkxpzwHFHmSp_hHbIfRNrdpOPGY7AM5rqUBesWcpjVDmvhNP2RUXnWz7Fnfs7maJv4KpwvI92JBTZUMcwjRXno40xcNMS67M4qs5-m0ymVKZckFjDq4yLodjyKfn7MlgpkQvHvo1-_b-7uvtx_r-84dPtzf3tZOgct1L3lvhyflBGq86Owh04GVjwaDhyjhsuk4qbNA2pJxQaD0MwoOyLaAV1-z1xfewxp8bpaznkBxNk1kobkljWdAKxVtZULygbo0prTTowxpms540gj6np0dd0tPn9DTIUn3RvHqw3-xM_q_iT1wFeHsBqBx5DLTq5AItjnxYyWXtY_iv_bt_1G4KS3Bm-kEnSmPc1qWkp1EnrkF_Ob_v_D0UAJKX9hsaP5U6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429638264</pqid></control><display><type>article</type><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</creator><creatorcontrib>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</creatorcontrib><description>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P &lt; 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2013.04.049</identifier><identifier>PMID: 23746961</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anaerobiosis - physiology ; Anoxia ; Anti-Bacterial Agents - pharmacology ; Biofilm ; Biofilms - drug effects ; Biofilms - growth &amp; development ; Drug Resistance, Bacterial - physiology ; Equipment Contamination ; Gentamicin ; Gentamicins - pharmacology ; Metabolomics ; Normoxia ; Oxygen - pharmacology ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Staphylococcus aureus - growth &amp; development ; Staphylococcus aureus - metabolism ; Surgery ; Sutures ; Vancomycin ; Vancomycin - pharmacology</subject><ispartof>The Journal of surgical research, 2013-09, Vol.184 (1), p.488-494</ispartof><rights>Elsevier Inc.</rights><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</citedby><cites>FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022480413004241$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23746961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hess, Donavon J., MD, PhD</creatorcontrib><creatorcontrib>Henry-Stanley, Michelle J., PhD</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R., PhD</creatorcontrib><creatorcontrib>Beilman, Gregory J., MD</creatorcontrib><creatorcontrib>Wells, Carol L., PhD</creatorcontrib><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P &lt; 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</description><subject>Anaerobiosis - physiology</subject><subject>Anoxia</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Biofilm</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth &amp; development</subject><subject>Drug Resistance, Bacterial - physiology</subject><subject>Equipment Contamination</subject><subject>Gentamicin</subject><subject>Gentamicins - pharmacology</subject><subject>Metabolomics</subject><subject>Normoxia</subject><subject>Oxygen - pharmacology</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Staphylococcus aureus - growth &amp; development</subject><subject>Staphylococcus aureus - metabolism</subject><subject>Surgery</subject><subject>Sutures</subject><subject>Vancomycin</subject><subject>Vancomycin - pharmacology</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU2L1EAQhhtR3HH1B3iRHL1krOruJB0EYVnWD1jwoJ6b_qhgxyQ9pjuD8-_tYVYPHoSCouB536LeYuwlwh4B2zfjfkxpzwHFHmSp_hHbIfRNrdpOPGY7AM5rqUBesWcpjVDmvhNP2RUXnWz7Fnfs7maJv4KpwvI92JBTZUMcwjRXno40xcNMS67M4qs5-m0ymVKZckFjDq4yLodjyKfn7MlgpkQvHvo1-_b-7uvtx_r-84dPtzf3tZOgct1L3lvhyflBGq86Owh04GVjwaDhyjhsuk4qbNA2pJxQaD0MwoOyLaAV1-z1xfewxp8bpaznkBxNk1kobkljWdAKxVtZULygbo0prTTowxpms540gj6np0dd0tPn9DTIUn3RvHqw3-xM_q_iT1wFeHsBqBx5DLTq5AItjnxYyWXtY_iv_bt_1G4KS3Bm-kEnSmPc1qWkp1EnrkF_Ob_v_D0UAJKX9hsaP5U6</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Hess, Donavon J., MD, PhD</creator><creator>Henry-Stanley, Michelle J., PhD</creator><creator>Lusczek, Elizabeth R., PhD</creator><creator>Beilman, Gregory J., MD</creator><creator>Wells, Carol L., PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Anoxia inhibits biofilm development and modulates antibiotic activity</title><author>Hess, Donavon J., MD, PhD ; Henry-Stanley, Michelle J., PhD ; Lusczek, Elizabeth R., PhD ; Beilman, Gregory J., MD ; Wells, Carol L., PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-9429b3decdf4ad87bf31c0d45b0a1a28ac157748151b5e8c381bd0f3d08b601b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anaerobiosis - physiology</topic><topic>Anoxia</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Biofilm</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth &amp; development</topic><topic>Drug Resistance, Bacterial - physiology</topic><topic>Equipment Contamination</topic><topic>Gentamicin</topic><topic>Gentamicins - pharmacology</topic><topic>Metabolomics</topic><topic>Normoxia</topic><topic>Oxygen - pharmacology</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Staphylococcus aureus - growth &amp; development</topic><topic>Staphylococcus aureus - metabolism</topic><topic>Surgery</topic><topic>Sutures</topic><topic>Vancomycin</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hess, Donavon J., MD, PhD</creatorcontrib><creatorcontrib>Henry-Stanley, Michelle J., PhD</creatorcontrib><creatorcontrib>Lusczek, Elizabeth R., PhD</creatorcontrib><creatorcontrib>Beilman, Gregory J., MD</creatorcontrib><creatorcontrib>Wells, Carol L., PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hess, Donavon J., MD, PhD</au><au>Henry-Stanley, Michelle J., PhD</au><au>Lusczek, Elizabeth R., PhD</au><au>Beilman, Gregory J., MD</au><au>Wells, Carol L., PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anoxia inhibits biofilm development and modulates antibiotic activity</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>184</volume><issue>1</issue><spage>488</spage><epage>494</epage><pages>488-494</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. Materials and methods To mimic catheter-associated biofilms, silastic coupons were inoculated with 107 S aureus and incubated either aerobically (∼21% O2 ) or anaerobically (10% CO2 , 5% H2 , 85% N2 ) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. Results Control biofilms (no antibiotic) cultivated aerobically contained 8.1–8.6 log10 S aureus . Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass ( P &lt; 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. Conclusions Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23746961</pmid><doi>10.1016/j.jss.2013.04.049</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4804
ispartof The Journal of surgical research, 2013-09, Vol.184 (1), p.488-494
issn 0022-4804
1095-8673
language eng
recordid cdi_proquest_miscellaneous_1429638264
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anaerobiosis - physiology
Anoxia
Anti-Bacterial Agents - pharmacology
Biofilm
Biofilms - drug effects
Biofilms - growth & development
Drug Resistance, Bacterial - physiology
Equipment Contamination
Gentamicin
Gentamicins - pharmacology
Metabolomics
Normoxia
Oxygen - pharmacology
Staphylococcus aureus
Staphylococcus aureus - drug effects
Staphylococcus aureus - growth & development
Staphylococcus aureus - metabolism
Surgery
Sutures
Vancomycin
Vancomycin - pharmacology
title Anoxia inhibits biofilm development and modulates antibiotic activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anoxia%20inhibits%20biofilm%20development%20and%20modulates%20antibiotic%20activity&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Hess,%20Donavon%20J.,%20MD,%20PhD&rft.date=2013-09-01&rft.volume=184&rft.issue=1&rft.spage=488&rft.epage=494&rft.pages=488-494&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2013.04.049&rft_dat=%3Cproquest_cross%3E1429638264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429638264&rft_id=info:pmid/23746961&rft_els_id=S0022480413004241&rfr_iscdi=true