Heart Failure Gene Therapy: The Path to Clinical Practice

Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2013-08, Vol.113 (6), p.792-809
Hauptverfasser: Pleger, Sven T., Brinks, Henriette, Ritterhoff, Julia, Raake, Philip, Koch, Walter J., Katus, Hugo A., Most, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 809
container_issue 6
container_start_page 792
container_title Circulation research
container_volume 113
creator Pleger, Sven T.
Brinks, Henriette
Ritterhoff, Julia
Raake, Philip
Koch, Walter J.
Katus, Hugo A.
Most, Patrick
description Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.
doi_str_mv 10.1161/CIRCRESAHA.113.300269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429217696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429217696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3022-6ffbd1167b51f5b1d1bf6b1968d71524ac1f77fd85cbae4adcad4d13e1ca16be3</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwCaAs2aR47DxqdlXUl1SJqpS15TgTNeA2xU5U9e9xlQKrmTu6c2d0CHkEOgRI4CVbrLP15H08H3vNh5xSlogr0oeYRWEUp3BN-pRSEaac0x65c-6TUog4E7ekx7gYiZTRPhFzVLYJpqoyrcVghnsMNlu06nB6PTfBSjXboKmDzFT7SisTrKzSTaXxntyUyjh8uNQB-ZhONtk8XL7NFtl4GWpOGQuTsswL_3Gax1DGORSQl0kOIhkV6flXpaFM07IYxTpXGKlCqyIqgCNoBUmOfECeu9yDrb9bdI3cVU6jMWqPdeskREwwSBOReGvcWbWtnbNYyoOtdsqeJFB5pib_qXnNZUfN7z1dTrT5Dou_rV9M3hB1hmNtGrTuy7RHtHKLyjRb6TFTToGFjAKnIx8a-gkw_gP4rXeP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429217696</pqid></control><display><type>article</type><title>Heart Failure Gene Therapy: The Path to Clinical Practice</title><source>MEDLINE</source><source>American Heart Association</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pleger, Sven T. ; Brinks, Henriette ; Ritterhoff, Julia ; Raake, Philip ; Koch, Walter J. ; Katus, Hugo A. ; Most, Patrick</creator><creatorcontrib>Pleger, Sven T. ; Brinks, Henriette ; Ritterhoff, Julia ; Raake, Philip ; Koch, Walter J. ; Katus, Hugo A. ; Most, Patrick</creatorcontrib><description>Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/CIRCRESAHA.113.300269</identifier><identifier>PMID: 23989720</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Adenylyl Cyclases - genetics ; Animals ; Gene Transfer Techniques ; Genetic Therapy ; Heart Failure - genetics ; Heart Failure - therapy ; Humans ; Receptors, Adrenergic, beta - genetics ; S100 Proteins - genetics ; Sarcoplasmic Reticulum Calcium-Transporting ATPases - genetics</subject><ispartof>Circulation research, 2013-08, Vol.113 (6), p.792-809</ispartof><rights>2013 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3022-6ffbd1167b51f5b1d1bf6b1968d71524ac1f77fd85cbae4adcad4d13e1ca16be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3687,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pleger, Sven T.</creatorcontrib><creatorcontrib>Brinks, Henriette</creatorcontrib><creatorcontrib>Ritterhoff, Julia</creatorcontrib><creatorcontrib>Raake, Philip</creatorcontrib><creatorcontrib>Koch, Walter J.</creatorcontrib><creatorcontrib>Katus, Hugo A.</creatorcontrib><creatorcontrib>Most, Patrick</creatorcontrib><title>Heart Failure Gene Therapy: The Path to Clinical Practice</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.</description><subject>Adenylyl Cyclases - genetics</subject><subject>Animals</subject><subject>Gene Transfer Techniques</subject><subject>Genetic Therapy</subject><subject>Heart Failure - genetics</subject><subject>Heart Failure - therapy</subject><subject>Humans</subject><subject>Receptors, Adrenergic, beta - genetics</subject><subject>S100 Proteins - genetics</subject><subject>Sarcoplasmic Reticulum Calcium-Transporting ATPases - genetics</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMtOwzAQRS0EoqXwCaAs2aR47DxqdlXUl1SJqpS15TgTNeA2xU5U9e9xlQKrmTu6c2d0CHkEOgRI4CVbrLP15H08H3vNh5xSlogr0oeYRWEUp3BN-pRSEaac0x65c-6TUog4E7ekx7gYiZTRPhFzVLYJpqoyrcVghnsMNlu06nB6PTfBSjXboKmDzFT7SisTrKzSTaXxntyUyjh8uNQB-ZhONtk8XL7NFtl4GWpOGQuTsswL_3Gax1DGORSQl0kOIhkV6flXpaFM07IYxTpXGKlCqyIqgCNoBUmOfECeu9yDrb9bdI3cVU6jMWqPdeskREwwSBOReGvcWbWtnbNYyoOtdsqeJFB5pib_qXnNZUfN7z1dTrT5Dou_rV9M3hB1hmNtGrTuy7RHtHKLyjRb6TFTToGFjAKnIx8a-gkw_gP4rXeP</recordid><startdate>20130830</startdate><enddate>20130830</enddate><creator>Pleger, Sven T.</creator><creator>Brinks, Henriette</creator><creator>Ritterhoff, Julia</creator><creator>Raake, Philip</creator><creator>Koch, Walter J.</creator><creator>Katus, Hugo A.</creator><creator>Most, Patrick</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130830</creationdate><title>Heart Failure Gene Therapy: The Path to Clinical Practice</title><author>Pleger, Sven T. ; Brinks, Henriette ; Ritterhoff, Julia ; Raake, Philip ; Koch, Walter J. ; Katus, Hugo A. ; Most, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3022-6ffbd1167b51f5b1d1bf6b1968d71524ac1f77fd85cbae4adcad4d13e1ca16be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenylyl Cyclases - genetics</topic><topic>Animals</topic><topic>Gene Transfer Techniques</topic><topic>Genetic Therapy</topic><topic>Heart Failure - genetics</topic><topic>Heart Failure - therapy</topic><topic>Humans</topic><topic>Receptors, Adrenergic, beta - genetics</topic><topic>S100 Proteins - genetics</topic><topic>Sarcoplasmic Reticulum Calcium-Transporting ATPases - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleger, Sven T.</creatorcontrib><creatorcontrib>Brinks, Henriette</creatorcontrib><creatorcontrib>Ritterhoff, Julia</creatorcontrib><creatorcontrib>Raake, Philip</creatorcontrib><creatorcontrib>Koch, Walter J.</creatorcontrib><creatorcontrib>Katus, Hugo A.</creatorcontrib><creatorcontrib>Most, Patrick</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleger, Sven T.</au><au>Brinks, Henriette</au><au>Ritterhoff, Julia</au><au>Raake, Philip</au><au>Koch, Walter J.</au><au>Katus, Hugo A.</au><au>Most, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heart Failure Gene Therapy: The Path to Clinical Practice</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2013-08-30</date><risdate>2013</risdate><volume>113</volume><issue>6</issue><spage>792</spage><epage>809</epage><pages>792-809</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><abstract>Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>23989720</pmid><doi>10.1161/CIRCRESAHA.113.300269</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2013-08, Vol.113 (6), p.792-809
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_1429217696
source MEDLINE; American Heart Association; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals
subjects Adenylyl Cyclases - genetics
Animals
Gene Transfer Techniques
Genetic Therapy
Heart Failure - genetics
Heart Failure - therapy
Humans
Receptors, Adrenergic, beta - genetics
S100 Proteins - genetics
Sarcoplasmic Reticulum Calcium-Transporting ATPases - genetics
title Heart Failure Gene Therapy: The Path to Clinical Practice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heart%20Failure%20Gene%20Therapy:%20The%20Path%20to%20Clinical%20Practice&rft.jtitle=Circulation%20research&rft.au=Pleger,%20Sven%20T.&rft.date=2013-08-30&rft.volume=113&rft.issue=6&rft.spage=792&rft.epage=809&rft.pages=792-809&rft.issn=0009-7330&rft.eissn=1524-4571&rft_id=info:doi/10.1161/CIRCRESAHA.113.300269&rft_dat=%3Cproquest_cross%3E1429217696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429217696&rft_id=info:pmid/23989720&rfr_iscdi=true