Tuning active emulsion dynamics via surfactants and topology

. We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91
Hauptverfasser: Thutupalli, Shashi, Herminghaus, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 8
container_start_page 91
container_title The European physical journal. E, Soft matter and biological physics
container_volume 36
creator Thutupalli, Shashi
Herminghaus, Stephan
description . We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter. Graphical abstract
doi_str_mv 10.1140/epje/i2013-13091-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429216412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429216412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIL4KXupl8tA14kcUvWPCygreQpumSpU3XpF3Yf2_2Q715moF53hnmQega8D0Aw1OzXpmpJRhoChQLSMkJGgMRJC0E_zz97RmM0EUIK4xxjNFzNCJUFCLnfIweFoOzbpko3duNSUw7NMF2Lqm2TrVWh2RjVRIGX0dAuT4kylVJ3627pltuL9FZrZpgro51gj6enxaz13T-_vI2e5ynmjHap7ooaaEIgOYCZ5xmRlVUmQpTEhutRKUFFJRzQRVhkJWkhKpgQtdZLhjFdILuDnvXvvsaTOhla4M2TaOc6YYggcVHIWNAIkoOqPZdCN7Ucu1tq_xWApY7a3JnTe6tyb01uQvdHPcPZWuq38iPpgjcHgEVtGpqr5y24Y_Lc04YySNHD1yII7c0Xq66wbvo5r_z3-zXhmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429216412</pqid></control><display><type>article</type><title>Tuning active emulsion dynamics via surfactants and topology</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thutupalli, Shashi ; Herminghaus, Stephan</creator><creatorcontrib>Thutupalli, Shashi ; Herminghaus, Stephan</creatorcontrib><description>. We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter. Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2013-13091-2</identifier><identifier>PMID: 23989755</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Colloidal state and disperse state ; Complex Fluids and Microfluidics ; Complex Systems ; Emulsions - chemistry ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Microfluidics ; Motion ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surface-Active Agents - chemistry ; Surfaces and Interfaces ; Thin Films ; Time Factors</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</citedby><cites>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2013-13091-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2013-13091-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27752427$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thutupalli, Shashi</creatorcontrib><creatorcontrib>Herminghaus, Stephan</creatorcontrib><title>Tuning active emulsion dynamics via surfactants and topology</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>. We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter. Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Emulsions - chemistry</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Microfluidics</subject><subject>Motion</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Time Factors</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIL4KXupl8tA14kcUvWPCygreQpumSpU3XpF3Yf2_2Q715moF53hnmQega8D0Aw1OzXpmpJRhoChQLSMkJGgMRJC0E_zz97RmM0EUIK4xxjNFzNCJUFCLnfIweFoOzbpko3duNSUw7NMF2Lqm2TrVWh2RjVRIGX0dAuT4kylVJ3627pltuL9FZrZpgro51gj6enxaz13T-_vI2e5ynmjHap7ooaaEIgOYCZ5xmRlVUmQpTEhutRKUFFJRzQRVhkJWkhKpgQtdZLhjFdILuDnvXvvsaTOhla4M2TaOc6YYggcVHIWNAIkoOqPZdCN7Ucu1tq_xWApY7a3JnTe6tyb01uQvdHPcPZWuq38iPpgjcHgEVtGpqr5y24Y_Lc04YySNHD1yII7c0Xq66wbvo5r_z3-zXhmc</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Thutupalli, Shashi</creator><creator>Herminghaus, Stephan</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Tuning active emulsion dynamics via surfactants and topology</title><author>Thutupalli, Shashi ; Herminghaus, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Emulsions - chemistry</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Microfluidics</topic><topic>Motion</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thutupalli, Shashi</creatorcontrib><creatorcontrib>Herminghaus, Stephan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thutupalli, Shashi</au><au>Herminghaus, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning active emulsion dynamics via surfactants and topology</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2013-08</date><risdate>2013</risdate><volume>36</volume><issue>8</issue><spage>91</spage><epage>91</epage><pages>91-91</pages><artnum>91</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>. We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23989755</pmid><doi>10.1140/epje/i2013-13091-2</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91
issn 1292-8941
1292-895X
language eng
recordid cdi_proquest_miscellaneous_1429216412
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biological and Medical Physics
Biophysics
Chemistry
Colloidal state and disperse state
Complex Fluids and Microfluidics
Complex Systems
Emulsions - chemistry
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
Kinetics
Microfluidics
Motion
Nanotechnology
Physics
Physics and Astronomy
Polymer Sciences
Regular Article
Soft and Granular Matter
Surface-Active Agents - chemistry
Surfaces and Interfaces
Thin Films
Time Factors
title Tuning active emulsion dynamics via surfactants and topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20active%20emulsion%20dynamics%20via%20surfactants%20and%20topology&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Thutupalli,%20Shashi&rft.date=2013-08&rft.volume=36&rft.issue=8&rft.spage=91&rft.epage=91&rft.pages=91-91&rft.artnum=91&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2013-13091-2&rft_dat=%3Cproquest_cross%3E1429216412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429216412&rft_id=info:pmid/23989755&rfr_iscdi=true