Tuning active emulsion dynamics via surfactants and topology
. We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studie...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 8 |
container_start_page | 91 |
container_title | The European physical journal. E, Soft matter and biological physics |
container_volume | 36 |
creator | Thutupalli, Shashi Herminghaus, Stephan |
description | .
We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.
Graphical abstract |
doi_str_mv | 10.1140/epje/i2013-13091-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1429216412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1429216412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIL4KXupl8tA14kcUvWPCygreQpumSpU3XpF3Yf2_2Q715moF53hnmQega8D0Aw1OzXpmpJRhoChQLSMkJGgMRJC0E_zz97RmM0EUIK4xxjNFzNCJUFCLnfIweFoOzbpko3duNSUw7NMF2Lqm2TrVWh2RjVRIGX0dAuT4kylVJ3627pltuL9FZrZpgro51gj6enxaz13T-_vI2e5ynmjHap7ooaaEIgOYCZ5xmRlVUmQpTEhutRKUFFJRzQRVhkJWkhKpgQtdZLhjFdILuDnvXvvsaTOhla4M2TaOc6YYggcVHIWNAIkoOqPZdCN7Ucu1tq_xWApY7a3JnTe6tyb01uQvdHPcPZWuq38iPpgjcHgEVtGpqr5y24Y_Lc04YySNHD1yII7c0Xq66wbvo5r_z3-zXhmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429216412</pqid></control><display><type>article</type><title>Tuning active emulsion dynamics via surfactants and topology</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Thutupalli, Shashi ; Herminghaus, Stephan</creator><creatorcontrib>Thutupalli, Shashi ; Herminghaus, Stephan</creatorcontrib><description>.
We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.
Graphical abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/i2013-13091-2</identifier><identifier>PMID: 23989755</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemistry ; Colloidal state and disperse state ; Complex Fluids and Microfluidics ; Complex Systems ; Emulsions - chemistry ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Microfluidics ; Motion ; Nanotechnology ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article ; Soft and Granular Matter ; Surface-Active Agents - chemistry ; Surfaces and Interfaces ; Thin Films ; Time Factors</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</citedby><cites>FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/i2013-13091-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/i2013-13091-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27752427$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23989755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thutupalli, Shashi</creatorcontrib><creatorcontrib>Herminghaus, Stephan</creatorcontrib><title>Tuning active emulsion dynamics via surfactants and topology</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>.
We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.
Graphical abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Emulsions - chemistry</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Microfluidics</subject><subject>Motion</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article</subject><subject>Soft and Granular Matter</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Time Factors</subject><issn>1292-8941</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIL4KXupl8tA14kcUvWPCygreQpumSpU3XpF3Yf2_2Q715moF53hnmQega8D0Aw1OzXpmpJRhoChQLSMkJGgMRJC0E_zz97RmM0EUIK4xxjNFzNCJUFCLnfIweFoOzbpko3duNSUw7NMF2Lqm2TrVWh2RjVRIGX0dAuT4kylVJ3627pltuL9FZrZpgro51gj6enxaz13T-_vI2e5ynmjHap7ooaaEIgOYCZ5xmRlVUmQpTEhutRKUFFJRzQRVhkJWkhKpgQtdZLhjFdILuDnvXvvsaTOhla4M2TaOc6YYggcVHIWNAIkoOqPZdCN7Ucu1tq_xWApY7a3JnTe6tyb01uQvdHPcPZWuq38iPpgjcHgEVtGpqr5y24Y_Lc04YySNHD1yII7c0Xq66wbvo5r_z3-zXhmc</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Thutupalli, Shashi</creator><creator>Herminghaus, Stephan</creator><general>Springer Berlin Heidelberg</general><general>EDP Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Tuning active emulsion dynamics via surfactants and topology</title><author>Thutupalli, Shashi ; Herminghaus, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c8b38a211c5906536ead3aed032ad3ca9dc91835593a2416b2b1d849cf6794303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Emulsions - chemistry</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Microfluidics</topic><topic>Motion</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article</topic><topic>Soft and Granular Matter</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thutupalli, Shashi</creatorcontrib><creatorcontrib>Herminghaus, Stephan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thutupalli, Shashi</au><au>Herminghaus, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning active emulsion dynamics via surfactants and topology</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2013-08</date><risdate>2013</risdate><volume>36</volume><issue>8</issue><spage>91</spage><epage>91</epage><pages>91-91</pages><artnum>91</artnum><issn>1292-8941</issn><eissn>1292-895X</eissn><abstract>.
We study water-in-oil emulsion droplets, running the Belousov-Zhabotinsky reaction, that form a new type of synthetic active matter unit. These droplets, stabilised by surfactants dispersed in the oil medium, are capable of internal chemical oscillations and self-propulsion. Here we present studies of networks of such self-propelled chemical oscillators and show that the resulting dynamics depend strongly on the topology of the active matter units and their connections. The chemical oscillations can couple via the exchange of promoter and inhibitor type of reaction intermediates across the droplets under precise conditions of surfactant bilayer formation between the droplets. The self-emerging synchronization dynamics are then characterized by the topology of the oscillator networks. Further, we show that the chemical oscillations inside the droplets cause oscillatory speed variations in the motion of individual droplets, extending our previous studies on such swimmers. Finally, we demonstrate that qualitatively new types of self-propelled motion can occur when simple droplet networks, for example two droplets connected by a bilayer, are set into motion. Altogether, these results lead to exciting possibilities in future studies of autonomous active matter.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23989755</pmid><doi>10.1140/epje/i2013-13091-2</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1292-8941 |
ispartof | The European physical journal. E, Soft matter and biological physics, 2013-08, Vol.36 (8), p.91-91, Article 91 |
issn | 1292-8941 1292-895X |
language | eng |
recordid | cdi_proquest_miscellaneous_1429216412 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biological and Medical Physics Biophysics Chemistry Colloidal state and disperse state Complex Fluids and Microfluidics Complex Systems Emulsions - chemistry Emulsions. Microemulsions. Foams Exact sciences and technology General and physical chemistry Kinetics Microfluidics Motion Nanotechnology Physics Physics and Astronomy Polymer Sciences Regular Article Soft and Granular Matter Surface-Active Agents - chemistry Surfaces and Interfaces Thin Films Time Factors |
title | Tuning active emulsion dynamics via surfactants and topology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20active%20emulsion%20dynamics%20via%20surfactants%20and%20topology&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Thutupalli,%20Shashi&rft.date=2013-08&rft.volume=36&rft.issue=8&rft.spage=91&rft.epage=91&rft.pages=91-91&rft.artnum=91&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/i2013-13091-2&rft_dat=%3Cproquest_cross%3E1429216412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429216412&rft_id=info:pmid/23989755&rfr_iscdi=true |