Robustness of methods for blinded sample size re-estimation with overdispersed count data
Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between‐patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are freque...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2013-09, Vol.32 (21), p.3623-3635 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3635 |
---|---|
container_issue | 21 |
container_start_page | 3623 |
container_title | Statistics in medicine |
container_volume | 32 |
creator | Schneider, Simon Schmidli, Heinz Friede, Tim |
description | Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between‐patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are frequently employed. Sample size calculation in the planning of such trials requires knowledge on the nuisance parameters, that is, the control (or overall) event rate and the overdispersion parameter. Usually, there is only little prior knowledge regarding these parameters in the design phase resulting in considerable uncertainty regarding the sample size. In this situation internal pilot studies have been found very useful and very recently several blinded procedures for sample size re‐estimation have been proposed for overdispersed count data, one of which is based on an EM‐algorithm. In this paper we investigate the EM‐algorithm based procedure with respect to aspects of their implementation by studying the algorithm's dependence on the choice of convergence criterion and find that the procedure is sensitive to the choice of the stopping criterion in scenarios relevant to clinical practice. We also compare the EM‐based procedure to other competing procedures regarding their operating characteristics such as sample size distribution and power. Furthermore, the robustness of these procedures to deviations from the model assumptions is explored. We find that some of the procedures are robust to at least moderate deviations. The results are illustrated using data from the US National Heart, Lung and Blood Institute sponsored Asymptomatic Cardiac Ischemia Pilot study. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/sim.5800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1428773560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061198461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3870-823944b589b5880dc3472e5f59af71de6867accabf309ea5dc79ff7fa63c61713</originalsourceid><addsrcrecordid>eNp10EtrFTEUB_AgFnutgp9AAm66mTaZTF5LKfZBH4JPXIVMckJTZybXZMZaP7259LaC4OJwNj_-nPNH6BUlB5SQ9rDE8YArQp6gFSVaNqTl6ilakVbKRkjKd9HzUm4IoZS38hnabRnXXAuxQt8-pH4p8wSl4BTwCPN18gWHlHE_xMmDx8WO6wFwib8BZ2igzHG0c0wTvo3zNU4_IftY1pBLxS4t04y9ne0LtBPsUODldu-hz8fvPh2dNhfvT86O3l40jilJGtUy3XU9V7qOIt6xTrbAA9c2SOpBKCGtc7YPjGiw3DupQ5DBCuYElZTtof373HVOP5Z6nRljcTAMdoK0FEO7VknJuCCVvvmH3qQlT_W6jdKd4qRTfwNdTqVkCGad68f5zlBiNnWbWrfZ1F3p623g0o_gH-FDvxU09-A2DnD33yDz8exyG7j1sczw69Hb_N0IySQ3X69OzBfdXXZX59Scsj-skZhG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1429485048</pqid></control><display><type>article</type><title>Robustness of methods for blinded sample size re-estimation with overdispersed count data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schneider, Simon ; Schmidli, Heinz ; Friede, Tim</creator><creatorcontrib>Schneider, Simon ; Schmidli, Heinz ; Friede, Tim</creatorcontrib><description>Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between‐patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are frequently employed. Sample size calculation in the planning of such trials requires knowledge on the nuisance parameters, that is, the control (or overall) event rate and the overdispersion parameter. Usually, there is only little prior knowledge regarding these parameters in the design phase resulting in considerable uncertainty regarding the sample size. In this situation internal pilot studies have been found very useful and very recently several blinded procedures for sample size re‐estimation have been proposed for overdispersed count data, one of which is based on an EM‐algorithm. In this paper we investigate the EM‐algorithm based procedure with respect to aspects of their implementation by studying the algorithm's dependence on the choice of convergence criterion and find that the procedure is sensitive to the choice of the stopping criterion in scenarios relevant to clinical practice. We also compare the EM‐based procedure to other competing procedures regarding their operating characteristics such as sample size distribution and power. Furthermore, the robustness of these procedures to deviations from the model assumptions is explored. We find that some of the procedures are robust to at least moderate deviations. The results are illustrated using data from the US National Heart, Lung and Blood Institute sponsored Asymptomatic Cardiac Ischemia Pilot study. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.5800</identifier><identifier>PMID: 23595966</identifier><identifier>CODEN: SMEDDA</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>adaptive design ; Algorithms ; Clinical trials ; Computer Simulation ; Convergence ; EM algorithm ; event counts ; Humans ; Knowledge ; Models, Statistical ; Pilot Projects ; Poisson distribution ; Randomized Controlled Trials as Topic - methods ; Sample Size</subject><ispartof>Statistics in medicine, 2013-09, Vol.32 (21), p.3623-3635</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Subscription Services, Inc. Sep 20, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3870-823944b589b5880dc3472e5f59af71de6867accabf309ea5dc79ff7fa63c61713</citedby><cites>FETCH-LOGICAL-c3870-823944b589b5880dc3472e5f59af71de6867accabf309ea5dc79ff7fa63c61713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.5800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.5800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23595966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schneider, Simon</creatorcontrib><creatorcontrib>Schmidli, Heinz</creatorcontrib><creatorcontrib>Friede, Tim</creatorcontrib><title>Robustness of methods for blinded sample size re-estimation with overdispersed count data</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between‐patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are frequently employed. Sample size calculation in the planning of such trials requires knowledge on the nuisance parameters, that is, the control (or overall) event rate and the overdispersion parameter. Usually, there is only little prior knowledge regarding these parameters in the design phase resulting in considerable uncertainty regarding the sample size. In this situation internal pilot studies have been found very useful and very recently several blinded procedures for sample size re‐estimation have been proposed for overdispersed count data, one of which is based on an EM‐algorithm. In this paper we investigate the EM‐algorithm based procedure with respect to aspects of their implementation by studying the algorithm's dependence on the choice of convergence criterion and find that the procedure is sensitive to the choice of the stopping criterion in scenarios relevant to clinical practice. We also compare the EM‐based procedure to other competing procedures regarding their operating characteristics such as sample size distribution and power. Furthermore, the robustness of these procedures to deviations from the model assumptions is explored. We find that some of the procedures are robust to at least moderate deviations. The results are illustrated using data from the US National Heart, Lung and Blood Institute sponsored Asymptomatic Cardiac Ischemia Pilot study. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>adaptive design</subject><subject>Algorithms</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>Convergence</subject><subject>EM algorithm</subject><subject>event counts</subject><subject>Humans</subject><subject>Knowledge</subject><subject>Models, Statistical</subject><subject>Pilot Projects</subject><subject>Poisson distribution</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Sample Size</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10EtrFTEUB_AgFnutgp9AAm66mTaZTF5LKfZBH4JPXIVMckJTZybXZMZaP7259LaC4OJwNj_-nPNH6BUlB5SQ9rDE8YArQp6gFSVaNqTl6ilakVbKRkjKd9HzUm4IoZS38hnabRnXXAuxQt8-pH4p8wSl4BTwCPN18gWHlHE_xMmDx8WO6wFwib8BZ2igzHG0c0wTvo3zNU4_IftY1pBLxS4t04y9ne0LtBPsUODldu-hz8fvPh2dNhfvT86O3l40jilJGtUy3XU9V7qOIt6xTrbAA9c2SOpBKCGtc7YPjGiw3DupQ5DBCuYElZTtof373HVOP5Z6nRljcTAMdoK0FEO7VknJuCCVvvmH3qQlT_W6jdKd4qRTfwNdTqVkCGad68f5zlBiNnWbWrfZ1F3p623g0o_gH-FDvxU09-A2DnD33yDz8exyG7j1sczw69Hb_N0IySQ3X69OzBfdXXZX59Scsj-skZhG</recordid><startdate>20130920</startdate><enddate>20130920</enddate><creator>Schneider, Simon</creator><creator>Schmidli, Heinz</creator><creator>Friede, Tim</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130920</creationdate><title>Robustness of methods for blinded sample size re-estimation with overdispersed count data</title><author>Schneider, Simon ; Schmidli, Heinz ; Friede, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3870-823944b589b5880dc3472e5f59af71de6867accabf309ea5dc79ff7fa63c61713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adaptive design</topic><topic>Algorithms</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>Convergence</topic><topic>EM algorithm</topic><topic>event counts</topic><topic>Humans</topic><topic>Knowledge</topic><topic>Models, Statistical</topic><topic>Pilot Projects</topic><topic>Poisson distribution</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Simon</creatorcontrib><creatorcontrib>Schmidli, Heinz</creatorcontrib><creatorcontrib>Friede, Tim</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Simon</au><au>Schmidli, Heinz</au><au>Friede, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of methods for blinded sample size re-estimation with overdispersed count data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>2013-09-20</date><risdate>2013</risdate><volume>32</volume><issue>21</issue><spage>3623</spage><epage>3635</epage><pages>3623-3635</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><coden>SMEDDA</coden><abstract>Counts of events are increasingly common as primary endpoints in randomized clinical trials. With between‐patient heterogeneity leading to variances in excess of the mean (referred to as overdispersion), statistical models reflecting this heterogeneity by mixtures of Poisson distributions are frequently employed. Sample size calculation in the planning of such trials requires knowledge on the nuisance parameters, that is, the control (or overall) event rate and the overdispersion parameter. Usually, there is only little prior knowledge regarding these parameters in the design phase resulting in considerable uncertainty regarding the sample size. In this situation internal pilot studies have been found very useful and very recently several blinded procedures for sample size re‐estimation have been proposed for overdispersed count data, one of which is based on an EM‐algorithm. In this paper we investigate the EM‐algorithm based procedure with respect to aspects of their implementation by studying the algorithm's dependence on the choice of convergence criterion and find that the procedure is sensitive to the choice of the stopping criterion in scenarios relevant to clinical practice. We also compare the EM‐based procedure to other competing procedures regarding their operating characteristics such as sample size distribution and power. Furthermore, the robustness of these procedures to deviations from the model assumptions is explored. We find that some of the procedures are robust to at least moderate deviations. The results are illustrated using data from the US National Heart, Lung and Blood Institute sponsored Asymptomatic Cardiac Ischemia Pilot study. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23595966</pmid><doi>10.1002/sim.5800</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2013-09, Vol.32 (21), p.3623-3635 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_1428773560 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | adaptive design Algorithms Clinical trials Computer Simulation Convergence EM algorithm event counts Humans Knowledge Models, Statistical Pilot Projects Poisson distribution Randomized Controlled Trials as Topic - methods Sample Size |
title | Robustness of methods for blinded sample size re-estimation with overdispersed count data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20methods%20for%20blinded%20sample%20size%20re-estimation%20with%20overdispersed%20count%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Schneider,%20Simon&rft.date=2013-09-20&rft.volume=32&rft.issue=21&rft.spage=3623&rft.epage=3635&rft.pages=3623-3635&rft.issn=0277-6715&rft.eissn=1097-0258&rft.coden=SMEDDA&rft_id=info:doi/10.1002/sim.5800&rft_dat=%3Cproquest_cross%3E3061198461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1429485048&rft_id=info:pmid/23595966&rfr_iscdi=true |