GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS
We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing tim...
Gespeichert in:
Veröffentlicht in: | Journal of applied econometrics (Chichester, England) England), 2013-08, Vol.28 (5), p.777-795 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 5 |
container_start_page | 777 |
container_title | Journal of applied econometrics (Chichester, England) |
container_volume | 28 |
creator | Creal, Drew Koopman, Siem Jan Lucas, André |
description | We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence. |
doi_str_mv | 10.1002/jae.1279 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1428510747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43907515</jstor_id><sourcerecordid>43907515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</originalsourceid><addsrcrecordid>eNp10E1r20AQBuClNFDXKfQPFAS99CJn9kuze1Ttta0g28FymtLLspJXYNeJUq1Nk38fBZsEAjkNwzy8DC8hXykMKAC72Do_oAz1B9KjoHVMmZQfSQ-U4jEyyT6RzyFsASABwB7REzM3yzTP_phRlF6vFkszWZqiyH6ZqBh2WzRbjExeRDfZahqlV1d5NkxX2WJenJOz2u2C_3KafXI9NqvhNM4Xk87kcSWU0LGnJdS1k8i7FzSykovaI08AKw_rUgu5Rk1ZjdSDcBVzUmHCS1wrV9XlWvA--XHMvW-bfwcf9vZ2Eyq_27k73xyCpYIpSQEFdvT7G7ptDu1d912nqGKJSph6DazaJoTW1_a-3dy69tFSsM8d2q5D-9xhR-Mj_b_Z-cd3nb1Mzcl_O_pt2DftixdcA0oqX_M2Ye8fXu6u_WsT5CjtzXxif8_GyU8xyi3yJ5-Qg8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418268628</pqid></control><display><type>article</type><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</creator><creatorcontrib>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</creatorcontrib><description>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.1279</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Econometric models ; Econometrics ; Mathematical functions ; Multivariate analysis ; Non-linear models ; Parameter estimation ; Probability ; Regression analysis ; Studies ; Time series ; Vector-autoregressive models</subject><ispartof>Journal of applied econometrics (Chichester, England), 2013-08, Vol.28 (5), p.777-795</ispartof><rights>Copyright © 2013 John Wiley & Sons Ltd.</rights><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</citedby><cites>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43907515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43907515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27911,27912,45561,45562,58004,58237</link.rule.ids></links><search><creatorcontrib>Creal, Drew</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lucas, André</creatorcontrib><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</description><subject>Econometric models</subject><subject>Econometrics</subject><subject>Mathematical functions</subject><subject>Multivariate analysis</subject><subject>Non-linear models</subject><subject>Parameter estimation</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Time series</subject><subject>Vector-autoregressive models</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10E1r20AQBuClNFDXKfQPFAS99CJn9kuze1Ttta0g28FymtLLspJXYNeJUq1Nk38fBZsEAjkNwzy8DC8hXykMKAC72Do_oAz1B9KjoHVMmZQfSQ-U4jEyyT6RzyFsASABwB7REzM3yzTP_phRlF6vFkszWZqiyH6ZqBh2WzRbjExeRDfZahqlV1d5NkxX2WJenJOz2u2C_3KafXI9NqvhNM4Xk87kcSWU0LGnJdS1k8i7FzSykovaI08AKw_rUgu5Rk1ZjdSDcBVzUmHCS1wrV9XlWvA--XHMvW-bfwcf9vZ2Eyq_27k73xyCpYIpSQEFdvT7G7ptDu1d912nqGKJSph6DazaJoTW1_a-3dy69tFSsM8d2q5D-9xhR-Mj_b_Z-cd3nb1Mzcl_O_pt2DftixdcA0oqX_M2Ye8fXu6u_WsT5CjtzXxif8_GyU8xyi3yJ5-Qg8M</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Creal, Drew</creator><creator>Koopman, Siem Jan</creator><creator>Lucas, André</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201308</creationdate><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><author>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Econometric models</topic><topic>Econometrics</topic><topic>Mathematical functions</topic><topic>Multivariate analysis</topic><topic>Non-linear models</topic><topic>Parameter estimation</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Time series</topic><topic>Vector-autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creal, Drew</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lucas, André</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creal, Drew</au><au>Koopman, Siem Jan</au><au>Lucas, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2013-08</date><risdate>2013</risdate><volume>28</volume><issue>5</issue><spage>777</spage><epage>795</epage><pages>777-795</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jae.1279</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7252 |
ispartof | Journal of applied econometrics (Chichester, England), 2013-08, Vol.28 (5), p.777-795 |
issn | 0883-7252 1099-1255 |
language | eng |
recordid | cdi_proquest_miscellaneous_1428510747 |
source | Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy |
subjects | Econometric models Econometrics Mathematical functions Multivariate analysis Non-linear models Parameter estimation Probability Regression analysis Studies Time series Vector-autoregressive models |
title | GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GENERALIZED%20AUTOREGRESSIVE%20SCORE%20MODELS%20WITH%20APPLICATIONS&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Creal,%20Drew&rft.date=2013-08&rft.volume=28&rft.issue=5&rft.spage=777&rft.epage=795&rft.pages=777-795&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.1279&rft_dat=%3Cjstor_proqu%3E43907515%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418268628&rft_id=info:pmid/&rft_jstor_id=43907515&rfr_iscdi=true |