GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS

We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) England), 2013-08, Vol.28 (5), p.777-795
Hauptverfasser: Creal, Drew, Koopman, Siem Jan, Lucas, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 795
container_issue 5
container_start_page 777
container_title Journal of applied econometrics (Chichester, England)
container_volume 28
creator Creal, Drew
Koopman, Siem Jan
Lucas, André
description We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.
doi_str_mv 10.1002/jae.1279
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1428510747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43907515</jstor_id><sourcerecordid>43907515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</originalsourceid><addsrcrecordid>eNp10E1r20AQBuClNFDXKfQPFAS99CJn9kuze1Ttta0g28FymtLLspJXYNeJUq1Nk38fBZsEAjkNwzy8DC8hXykMKAC72Do_oAz1B9KjoHVMmZQfSQ-U4jEyyT6RzyFsASABwB7REzM3yzTP_phRlF6vFkszWZqiyH6ZqBh2WzRbjExeRDfZahqlV1d5NkxX2WJenJOz2u2C_3KafXI9NqvhNM4Xk87kcSWU0LGnJdS1k8i7FzSykovaI08AKw_rUgu5Rk1ZjdSDcBVzUmHCS1wrV9XlWvA--XHMvW-bfwcf9vZ2Eyq_27k73xyCpYIpSQEFdvT7G7ptDu1d912nqGKJSph6DazaJoTW1_a-3dy69tFSsM8d2q5D-9xhR-Mj_b_Z-cd3nb1Mzcl_O_pt2DftixdcA0oqX_M2Ye8fXu6u_WsT5CjtzXxif8_GyU8xyi3yJ5-Qg8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418268628</pqid></control><display><type>article</type><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</creator><creatorcontrib>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</creatorcontrib><description>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</description><identifier>ISSN: 0883-7252</identifier><identifier>EISSN: 1099-1255</identifier><identifier>DOI: 10.1002/jae.1279</identifier><identifier>CODEN: JAECET</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Econometric models ; Econometrics ; Mathematical functions ; Multivariate analysis ; Non-linear models ; Parameter estimation ; Probability ; Regression analysis ; Studies ; Time series ; Vector-autoregressive models</subject><ispartof>Journal of applied econometrics (Chichester, England), 2013-08, Vol.28 (5), p.777-795</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright Wiley Periodicals Inc. Aug 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</citedby><cites>FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43907515$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43907515$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,1414,27911,27912,45561,45562,58004,58237</link.rule.ids></links><search><creatorcontrib>Creal, Drew</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lucas, André</creatorcontrib><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><title>Journal of applied econometrics (Chichester, England)</title><addtitle>J. Appl. Econ</addtitle><description>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</description><subject>Econometric models</subject><subject>Econometrics</subject><subject>Mathematical functions</subject><subject>Multivariate analysis</subject><subject>Non-linear models</subject><subject>Parameter estimation</subject><subject>Probability</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Time series</subject><subject>Vector-autoregressive models</subject><issn>0883-7252</issn><issn>1099-1255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10E1r20AQBuClNFDXKfQPFAS99CJn9kuze1Ttta0g28FymtLLspJXYNeJUq1Nk38fBZsEAjkNwzy8DC8hXykMKAC72Do_oAz1B9KjoHVMmZQfSQ-U4jEyyT6RzyFsASABwB7REzM3yzTP_phRlF6vFkszWZqiyH6ZqBh2WzRbjExeRDfZahqlV1d5NkxX2WJenJOz2u2C_3KafXI9NqvhNM4Xk87kcSWU0LGnJdS1k8i7FzSykovaI08AKw_rUgu5Rk1ZjdSDcBVzUmHCS1wrV9XlWvA--XHMvW-bfwcf9vZ2Eyq_27k73xyCpYIpSQEFdvT7G7ptDu1d912nqGKJSph6DazaJoTW1_a-3dy69tFSsM8d2q5D-9xhR-Mj_b_Z-cd3nb1Mzcl_O_pt2DftixdcA0oqX_M2Ye8fXu6u_WsT5CjtzXxif8_GyU8xyi3yJ5-Qg8M</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Creal, Drew</creator><creator>Koopman, Siem Jan</creator><creator>Lucas, André</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201308</creationdate><title>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</title><author>Creal, Drew ; Koopman, Siem Jan ; Lucas, André</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4849-e1b0ffa573088972b34fe73607ce0db945d7912f71e04ac2a58763b7d8acfbd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Econometric models</topic><topic>Econometrics</topic><topic>Mathematical functions</topic><topic>Multivariate analysis</topic><topic>Non-linear models</topic><topic>Parameter estimation</topic><topic>Probability</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Time series</topic><topic>Vector-autoregressive models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Creal, Drew</creatorcontrib><creatorcontrib>Koopman, Siem Jan</creatorcontrib><creatorcontrib>Lucas, André</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of applied econometrics (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Creal, Drew</au><au>Koopman, Siem Jan</au><au>Lucas, André</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS</atitle><jtitle>Journal of applied econometrics (Chichester, England)</jtitle><addtitle>J. Appl. Econ</addtitle><date>2013-08</date><risdate>2013</risdate><volume>28</volume><issue>5</issue><spage>777</spage><epage>795</epage><pages>777-795</pages><issn>0883-7252</issn><eissn>1099-1255</eissn><coden>JAECET</coden><abstract>We propose a class of observation-driven time series models referred to as generalized autoregressive score (GAS) models. The mechanism to update the parameters over time is the scaled score of the likelihood function. This new approach provides a unified and consistent framework for introducing time-varying parameters in a wide class of nonlinear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity, and Poisson count models with time-varying mean. In addition, our approach can lead to new formulations of observation-driven models. We illustrate our framework by introducing new model specifications for time-varying copula functions and for multi variate point processes with time-vary ing parameters. We study the models in detail and provide simulation and empirical evidence.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jae.1279</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7252
ispartof Journal of applied econometrics (Chichester, England), 2013-08, Vol.28 (5), p.777-795
issn 0883-7252
1099-1255
language eng
recordid cdi_proquest_miscellaneous_1428510747
source Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy
subjects Econometric models
Econometrics
Mathematical functions
Multivariate analysis
Non-linear models
Parameter estimation
Probability
Regression analysis
Studies
Time series
Vector-autoregressive models
title GENERALIZED AUTOREGRESSIVE SCORE MODELS WITH APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GENERALIZED%20AUTOREGRESSIVE%20SCORE%20MODELS%20WITH%20APPLICATIONS&rft.jtitle=Journal%20of%20applied%20econometrics%20(Chichester,%20England)&rft.au=Creal,%20Drew&rft.date=2013-08&rft.volume=28&rft.issue=5&rft.spage=777&rft.epage=795&rft.pages=777-795&rft.issn=0883-7252&rft.eissn=1099-1255&rft.coden=JAECET&rft_id=info:doi/10.1002/jae.1279&rft_dat=%3Cjstor_proqu%3E43907515%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418268628&rft_id=info:pmid/&rft_jstor_id=43907515&rfr_iscdi=true