Multiview Face Detection and Registration Requiring Minimal Manual Intervention

Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2013-10, Vol.35 (10), p.2484-2497
Hauptverfasser: Anvar, Seyed Mohammad Hassan, Wei-Yun Yau, Eam Khwang Teoh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2497
container_issue 10
container_start_page 2484
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 35
creator Anvar, Seyed Mohammad Hassan
Wei-Yun Yau
Eam Khwang Teoh
description Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.
doi_str_mv 10.1109/TPAMI.2013.37
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427745173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461885</ieee_id><sourcerecordid>1427745173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</originalsourceid><addsrcrecordid>eNpF0MtLxDAQBvAgiq6PoydBehG8dE06eR7F54KLInouaTqVSDerSav439u6q54GMj8-Mh8hh4xOGaPm7OnhfD6bFpTBFNQGmTADJgcBZpNMKJNFrnWhd8huSq-UMi4obJOdAowcHJuQ-3nfdv7D42d2bR1ml9ih6_wyZDbU2SO--NRF-_PwiO-9jz68ZHMf_MK22dyGfhiz0GH8wDCqfbLV2DbhwXrukefrq6eL2_zu_mZ2cX6XO-DQ5cC1pDVziqtGYGMkCqaZaDhWTmrBEJEqrk1FoaKikSBRc1o5qI1yda1gj5yuct_i8r3H1JULnxy2rQ247FPJeKEUF0zBQPMVdXGZUsSmfIvD9-NXyWg5dlj-dFiOHZYwRh-vo_tqgfWf_i1tACdrYJOzbRNtcD79O2UUN8UYdLRyfjjnby25ZFoL-AYp5IJK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427745173</pqid></control><display><type>article</type><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><source>IEEE Electronic Library (IEL)</source><creator>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</creator><creatorcontrib>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</creatorcontrib><description>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2013.37</identifier><identifier>PMID: 23969391</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Computer science; control theory; systems ; Detectors ; Exact sciences and technology ; Face ; Face - anatomy &amp; histology ; face constellation ; Face detection ; Face recognition ; Feature extraction ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; image registration ; Manuals ; Multiview ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photography - methods ; simultaneous face detection and localization ; Training ; User-Computer Interface</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-10, Vol.35 (10), p.2484-2497</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</citedby><cites>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27974927$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23969391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anvar, Seyed Mohammad Hassan</creatorcontrib><creatorcontrib>Wei-Yun Yau</creatorcontrib><creatorcontrib>Eam Khwang Teoh</creatorcontrib><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Computer science; control theory; systems</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy &amp; histology</subject><subject>face constellation</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>image registration</subject><subject>Manuals</subject><subject>Multiview</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photography - methods</subject><subject>simultaneous face detection and localization</subject><subject>Training</subject><subject>User-Computer Interface</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpF0MtLxDAQBvAgiq6PoydBehG8dE06eR7F54KLInouaTqVSDerSav439u6q54GMj8-Mh8hh4xOGaPm7OnhfD6bFpTBFNQGmTADJgcBZpNMKJNFrnWhd8huSq-UMi4obJOdAowcHJuQ-3nfdv7D42d2bR1ml9ih6_wyZDbU2SO--NRF-_PwiO-9jz68ZHMf_MK22dyGfhiz0GH8wDCqfbLV2DbhwXrukefrq6eL2_zu_mZ2cX6XO-DQ5cC1pDVziqtGYGMkCqaZaDhWTmrBEJEqrk1FoaKikSBRc1o5qI1yda1gj5yuct_i8r3H1JULnxy2rQ247FPJeKEUF0zBQPMVdXGZUsSmfIvD9-NXyWg5dlj-dFiOHZYwRh-vo_tqgfWf_i1tACdrYJOzbRNtcD79O2UUN8UYdLRyfjjnby25ZFoL-AYp5IJK</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Anvar, Seyed Mohammad Hassan</creator><creator>Wei-Yun Yau</creator><creator>Eam Khwang Teoh</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><author>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Computer science; control theory; systems</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy &amp; histology</topic><topic>face constellation</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>image registration</topic><topic>Manuals</topic><topic>Multiview</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photography - methods</topic><topic>simultaneous face detection and localization</topic><topic>Training</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anvar, Seyed Mohammad Hassan</creatorcontrib><creatorcontrib>Wei-Yun Yau</creatorcontrib><creatorcontrib>Eam Khwang Teoh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anvar, Seyed Mohammad Hassan</au><au>Wei-Yun Yau</au><au>Eam Khwang Teoh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>35</volume><issue>10</issue><spage>2484</spage><epage>2497</epage><pages>2484-2497</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>23969391</pmid><doi>10.1109/TPAMI.2013.37</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2013-10, Vol.35 (10), p.2484-2497
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1427745173
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Biometry - methods
Computer science
control theory
systems
Detectors
Exact sciences and technology
Face
Face - anatomy & histology
face constellation
Face detection
Face recognition
Feature extraction
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
image registration
Manuals
Multiview
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Photography - methods
simultaneous face detection and localization
Training
User-Computer Interface
title Multiview Face Detection and Registration Requiring Minimal Manual Intervention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20Face%20Detection%20and%20Registration%20Requiring%20Minimal%20Manual%20Intervention&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Anvar,%20Seyed%20Mohammad%20Hassan&rft.date=2013-10-01&rft.volume=35&rft.issue=10&rft.spage=2484&rft.epage=2497&rft.pages=2484-2497&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2013.37&rft_dat=%3Cproquest_RIE%3E1427745173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427745173&rft_id=info:pmid/23969391&rft_ieee_id=6461885&rfr_iscdi=true