Multiview Face Detection and Registration Requiring Minimal Manual Intervention
Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2013-10, Vol.35 (10), p.2484-2497 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2497 |
---|---|
container_issue | 10 |
container_start_page | 2484 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 35 |
creator | Anvar, Seyed Mohammad Hassan Wei-Yun Yau Eam Khwang Teoh |
description | Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose. |
doi_str_mv | 10.1109/TPAMI.2013.37 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427745173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461885</ieee_id><sourcerecordid>1427745173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</originalsourceid><addsrcrecordid>eNpF0MtLxDAQBvAgiq6PoydBehG8dE06eR7F54KLInouaTqVSDerSav439u6q54GMj8-Mh8hh4xOGaPm7OnhfD6bFpTBFNQGmTADJgcBZpNMKJNFrnWhd8huSq-UMi4obJOdAowcHJuQ-3nfdv7D42d2bR1ml9ih6_wyZDbU2SO--NRF-_PwiO-9jz68ZHMf_MK22dyGfhiz0GH8wDCqfbLV2DbhwXrukefrq6eL2_zu_mZ2cX6XO-DQ5cC1pDVziqtGYGMkCqaZaDhWTmrBEJEqrk1FoaKikSBRc1o5qI1yda1gj5yuct_i8r3H1JULnxy2rQ247FPJeKEUF0zBQPMVdXGZUsSmfIvD9-NXyWg5dlj-dFiOHZYwRh-vo_tqgfWf_i1tACdrYJOzbRNtcD79O2UUN8UYdLRyfjjnby25ZFoL-AYp5IJK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427745173</pqid></control><display><type>article</type><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><source>IEEE Electronic Library (IEL)</source><creator>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</creator><creatorcontrib>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</creatorcontrib><description>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2013.37</identifier><identifier>PMID: 23969391</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Biometry - methods ; Computer science; control theory; systems ; Detectors ; Exact sciences and technology ; Face ; Face - anatomy & histology ; face constellation ; Face detection ; Face recognition ; Feature extraction ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; image registration ; Manuals ; Multiview ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photography - methods ; simultaneous face detection and localization ; Training ; User-Computer Interface</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2013-10, Vol.35 (10), p.2484-2497</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</citedby><cites>FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461885$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27974927$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23969391$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anvar, Seyed Mohammad Hassan</creatorcontrib><creatorcontrib>Wei-Yun Yau</creatorcontrib><creatorcontrib>Eam Khwang Teoh</creatorcontrib><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biometry - methods</subject><subject>Computer science; control theory; systems</subject><subject>Detectors</subject><subject>Exact sciences and technology</subject><subject>Face</subject><subject>Face - anatomy & histology</subject><subject>face constellation</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>image registration</subject><subject>Manuals</subject><subject>Multiview</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photography - methods</subject><subject>simultaneous face detection and localization</subject><subject>Training</subject><subject>User-Computer Interface</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpF0MtLxDAQBvAgiq6PoydBehG8dE06eR7F54KLInouaTqVSDerSav439u6q54GMj8-Mh8hh4xOGaPm7OnhfD6bFpTBFNQGmTADJgcBZpNMKJNFrnWhd8huSq-UMi4obJOdAowcHJuQ-3nfdv7D42d2bR1ml9ih6_wyZDbU2SO--NRF-_PwiO-9jz68ZHMf_MK22dyGfhiz0GH8wDCqfbLV2DbhwXrukefrq6eL2_zu_mZ2cX6XO-DQ5cC1pDVziqtGYGMkCqaZaDhWTmrBEJEqrk1FoaKikSBRc1o5qI1yda1gj5yuct_i8r3H1JULnxy2rQ247FPJeKEUF0zBQPMVdXGZUsSmfIvD9-NXyWg5dlj-dFiOHZYwRh-vo_tqgfWf_i1tACdrYJOzbRNtcD79O2UUN8UYdLRyfjjnby25ZFoL-AYp5IJK</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Anvar, Seyed Mohammad Hassan</creator><creator>Wei-Yun Yau</creator><creator>Eam Khwang Teoh</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</title><author>Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-34860d1c747f5ef96e51815f4ebc6851eee07489b03b05f636e840bc3d97cdd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biometry - methods</topic><topic>Computer science; control theory; systems</topic><topic>Detectors</topic><topic>Exact sciences and technology</topic><topic>Face</topic><topic>Face - anatomy & histology</topic><topic>face constellation</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>image registration</topic><topic>Manuals</topic><topic>Multiview</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photography - methods</topic><topic>simultaneous face detection and localization</topic><topic>Training</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anvar, Seyed Mohammad Hassan</creatorcontrib><creatorcontrib>Wei-Yun Yau</creatorcontrib><creatorcontrib>Eam Khwang Teoh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anvar, Seyed Mohammad Hassan</au><au>Wei-Yun Yau</au><au>Eam Khwang Teoh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiview Face Detection and Registration Requiring Minimal Manual Intervention</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>35</volume><issue>10</issue><spage>2484</spage><epage>2497</epage><pages>2484-2497</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>23969391</pmid><doi>10.1109/TPAMI.2013.37</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2013-10, Vol.35 (10), p.2484-2497 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_1427745173 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial Intelligence Biometry - methods Computer science control theory systems Detectors Exact sciences and technology Face Face - anatomy & histology face constellation Face detection Face recognition Feature extraction Image Enhancement - methods Image Interpretation, Computer-Assisted - methods image registration Manuals Multiview Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Photography - methods simultaneous face detection and localization Training User-Computer Interface |
title | Multiview Face Detection and Registration Requiring Minimal Manual Intervention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiview%20Face%20Detection%20and%20Registration%20Requiring%20Minimal%20Manual%20Intervention&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Anvar,%20Seyed%20Mohammad%20Hassan&rft.date=2013-10-01&rft.volume=35&rft.issue=10&rft.spage=2484&rft.epage=2497&rft.pages=2484-2497&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2013.37&rft_dat=%3Cproquest_RIE%3E1427745173%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427745173&rft_id=info:pmid/23969391&rft_ieee_id=6461885&rfr_iscdi=true |