A SVM-kNN method for quasar-star classification
We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probabilit...
Gespeichert in:
Veröffentlicht in: | Science China. Physics, mechanics & astronomy mechanics & astronomy, 2013-06, Vol.56 (6), p.1227-1234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1234 |
---|---|
container_issue | 6 |
container_start_page | 1227 |
container_title | Science China. Physics, mechanics & astronomy |
container_volume | 56 |
creator | Peng, NanBo Zhang, YanXia Zhao, YongHeng |
description | We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys. |
doi_str_mv | 10.1007/s11433-013-5083-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427001524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45814354</cqvip_id><sourcerecordid>2918606868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpD2ALYmEx9VdsZ6wqvqRSBj5Wy3HsNiWNWzsZ-Pe4SgUSA7fcDc97d3oAuMToFiMkphFjRilEmMIcSQrlCRhhyQuICyJO08wFg4IyeQ4mMW5QKlogJtgITGfZ68cz_Fwus63t1r7KnA_ZvtdRBxg7HTLT6BhrVxvd1b69AGdON9FOjn0M3u_v3uaPcPHy8DSfLaChIu8gp5W1vGSydLjktiy0oxY7hk0lK26QEZJXpda5KGRFkKa80pYQ6UpDdG4dHYObYe8u-H1vY6e2dTS2aXRrfR8VZkQghHPCEnr9B934PrTpO0WKpAFxyWWi8ECZ4GMM1qldqLc6fCmM1MGiGiyqZFEdLKpDhgyZmNh2ZcPv5v9CV8dDa9-u9in3c4nlMtE5o99dKn5v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606868</pqid></control><display><type>article</type><title>A SVM-kNN method for quasar-star classification</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</creator><creatorcontrib>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</creatorcontrib><description>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-013-5083-8</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Astronomy ; Classical and Continuum Physics ; Classification ; K-近邻 ; Observations and Techniques ; Physics ; Physics and Astronomy ; Quasars ; Sky surveys (astronomy) ; Spectral classification ; Support vector machines ; SVM ; 光谱分类 ; 支持向量机 ; 星级 ; 泛化能力 ; 类星体 ; 预测精度</subject><ispartof>Science China. Physics, mechanics & astronomy, 2013-06, Vol.56 (6), p.1227-1234</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</citedby><cites>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-013-5083-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-013-5083-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Peng, NanBo</creatorcontrib><creatorcontrib>Zhang, YanXia</creatorcontrib><creatorcontrib>Zhao, YongHeng</creatorcontrib><title>A SVM-kNN method for quasar-star classification</title><title>Science China. Physics, mechanics & astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</description><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Classification</subject><subject>K-近邻</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quasars</subject><subject>Sky surveys (astronomy)</subject><subject>Spectral classification</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>光谱分类</subject><subject>支持向量机</subject><subject>星级</subject><subject>泛化能力</subject><subject>类星体</subject><subject>预测精度</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EElXpD2ALYmEx9VdsZ6wqvqRSBj5Wy3HsNiWNWzsZ-Pe4SgUSA7fcDc97d3oAuMToFiMkphFjRilEmMIcSQrlCRhhyQuICyJO08wFg4IyeQ4mMW5QKlogJtgITGfZ68cz_Fwus63t1r7KnA_ZvtdRBxg7HTLT6BhrVxvd1b69AGdON9FOjn0M3u_v3uaPcPHy8DSfLaChIu8gp5W1vGSydLjktiy0oxY7hk0lK26QEZJXpda5KGRFkKa80pYQ6UpDdG4dHYObYe8u-H1vY6e2dTS2aXRrfR8VZkQghHPCEnr9B934PrTpO0WKpAFxyWWi8ECZ4GMM1qldqLc6fCmM1MGiGiyqZFEdLKpDhgyZmNh2ZcPv5v9CV8dDa9-u9in3c4nlMtE5o99dKn5v</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Peng, NanBo</creator><creator>Zhang, YanXia</creator><creator>Zhao, YongHeng</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130601</creationdate><title>A SVM-kNN method for quasar-star classification</title><author>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Classification</topic><topic>K-近邻</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quasars</topic><topic>Sky surveys (astronomy)</topic><topic>Spectral classification</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>光谱分类</topic><topic>支持向量机</topic><topic>星级</topic><topic>泛化能力</topic><topic>类星体</topic><topic>预测精度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, NanBo</creatorcontrib><creatorcontrib>Zhang, YanXia</creatorcontrib><creatorcontrib>Zhao, YongHeng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics & astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, NanBo</au><au>Zhang, YanXia</au><au>Zhao, YongHeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SVM-kNN method for quasar-star classification</atitle><jtitle>Science China. Physics, mechanics & astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>56</volume><issue>6</issue><spage>1227</spage><epage>1234</epage><pages>1227-1234</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-013-5083-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7348 |
ispartof | Science China. Physics, mechanics & astronomy, 2013-06, Vol.56 (6), p.1227-1234 |
issn | 1674-7348 1869-1927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1427001524 |
source | SpringerLink (Online service); Alma/SFX Local Collection |
subjects | Astronomy Classical and Continuum Physics Classification K-近邻 Observations and Techniques Physics Physics and Astronomy Quasars Sky surveys (astronomy) Spectral classification Support vector machines SVM 光谱分类 支持向量机 星级 泛化能力 类星体 预测精度 |
title | A SVM-kNN method for quasar-star classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SVM-kNN%20method%20for%20quasar-star%20classification&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Peng,%20NanBo&rft.date=2013-06-01&rft.volume=56&rft.issue=6&rft.spage=1227&rft.epage=1234&rft.pages=1227-1234&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-013-5083-8&rft_dat=%3Cproquest_cross%3E2918606868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918606868&rft_id=info:pmid/&rft_cqvip_id=45814354&rfr_iscdi=true |