A SVM-kNN method for quasar-star classification

We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2013-06, Vol.56 (6), p.1227-1234
Hauptverfasser: Peng, NanBo, Zhang, YanXia, Zhao, YongHeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1234
container_issue 6
container_start_page 1227
container_title Science China. Physics, mechanics & astronomy
container_volume 56
creator Peng, NanBo
Zhang, YanXia
Zhao, YongHeng
description We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.
doi_str_mv 10.1007/s11433-013-5083-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1427001524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45814354</cqvip_id><sourcerecordid>2918606868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EElXpD2ALYmEx9VdsZ6wqvqRSBj5Wy3HsNiWNWzsZ-Pe4SgUSA7fcDc97d3oAuMToFiMkphFjRilEmMIcSQrlCRhhyQuICyJO08wFg4IyeQ4mMW5QKlogJtgITGfZ68cz_Fwus63t1r7KnA_ZvtdRBxg7HTLT6BhrVxvd1b69AGdON9FOjn0M3u_v3uaPcPHy8DSfLaChIu8gp5W1vGSydLjktiy0oxY7hk0lK26QEZJXpda5KGRFkKa80pYQ6UpDdG4dHYObYe8u-H1vY6e2dTS2aXRrfR8VZkQghHPCEnr9B934PrTpO0WKpAFxyWWi8ECZ4GMM1qldqLc6fCmM1MGiGiyqZFEdLKpDhgyZmNh2ZcPv5v9CV8dDa9-u9in3c4nlMtE5o99dKn5v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606868</pqid></control><display><type>article</type><title>A SVM-kNN method for quasar-star classification</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><creator>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</creator><creatorcontrib>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</creatorcontrib><description>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-013-5083-8</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Astronomy ; Classical and Continuum Physics ; Classification ; K-近邻 ; Observations and Techniques ; Physics ; Physics and Astronomy ; Quasars ; Sky surveys (astronomy) ; Spectral classification ; Support vector machines ; SVM ; 光谱分类 ; 支持向量机 ; 星级 ; 泛化能力 ; 类星体 ; 预测精度</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2013-06, Vol.56 (6), p.1227-1234</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</citedby><cites>FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60109X/60109X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-013-5083-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-013-5083-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Peng, NanBo</creatorcontrib><creatorcontrib>Zhang, YanXia</creatorcontrib><creatorcontrib>Zhao, YongHeng</creatorcontrib><title>A SVM-kNN method for quasar-star classification</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><description>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</description><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Classification</subject><subject>K-近邻</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quasars</subject><subject>Sky surveys (astronomy)</subject><subject>Spectral classification</subject><subject>Support vector machines</subject><subject>SVM</subject><subject>光谱分类</subject><subject>支持向量机</subject><subject>星级</subject><subject>泛化能力</subject><subject>类星体</subject><subject>预测精度</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EElXpD2ALYmEx9VdsZ6wqvqRSBj5Wy3HsNiWNWzsZ-Pe4SgUSA7fcDc97d3oAuMToFiMkphFjRilEmMIcSQrlCRhhyQuICyJO08wFg4IyeQ4mMW5QKlogJtgITGfZ68cz_Fwus63t1r7KnA_ZvtdRBxg7HTLT6BhrVxvd1b69AGdON9FOjn0M3u_v3uaPcPHy8DSfLaChIu8gp5W1vGSydLjktiy0oxY7hk0lK26QEZJXpda5KGRFkKa80pYQ6UpDdG4dHYObYe8u-H1vY6e2dTS2aXRrfR8VZkQghHPCEnr9B934PrTpO0WKpAFxyWWi8ECZ4GMM1qldqLc6fCmM1MGiGiyqZFEdLKpDhgyZmNh2ZcPv5v9CV8dDa9-u9in3c4nlMtE5o99dKn5v</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Peng, NanBo</creator><creator>Zhang, YanXia</creator><creator>Zhao, YongHeng</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20130601</creationdate><title>A SVM-kNN method for quasar-star classification</title><author>Peng, NanBo ; Zhang, YanXia ; Zhao, YongHeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-63dee6b48bf1b6eb9af3e1f41cd8d6c0c786dbaa5798d20a36dae228fbc2a5ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Classification</topic><topic>K-近邻</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quasars</topic><topic>Sky surveys (astronomy)</topic><topic>Spectral classification</topic><topic>Support vector machines</topic><topic>SVM</topic><topic>光谱分类</topic><topic>支持向量机</topic><topic>星级</topic><topic>泛化能力</topic><topic>类星体</topic><topic>预测精度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, NanBo</creatorcontrib><creatorcontrib>Zhang, YanXia</creatorcontrib><creatorcontrib>Zhao, YongHeng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, NanBo</au><au>Zhang, YanXia</au><au>Zhao, YongHeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SVM-kNN method for quasar-star classification</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><addtitle>SCIENCE CHINA Physics, Mechanics & Astronomy</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>56</volume><issue>6</issue><spage>1227</spage><epage>1234</epage><pages>1227-1234</pages><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>We integrate k-Nearest Neighbors(kNN) into Support Vector Machine(SVM) and create a new method called SVM-kNN.SVM-kNN strengthens the generalization ability of SVM and apply kNN to correct some forecast errors of SVM and improve the forecast accuracy.In addition,it can give the prediction probability of any quasar candidate through counting the nearest neighbors of that candidate which is produced by kNN.Applying photometric data of stars and quasars with spectral classification from SDSS DR7 and considering limiting magnitude error is less than 0.1,SVM-kNN and SVM reach much higher performance that all the classification metrics of quasar selection are above 97.0%.Apparently,the performance of SVM-kNN has slighter improvement than that of SVM.Therefore SVM-kNN is such a competitive and promising approach that can be used to construct the targeting catalogue of quasar candidates for large sky surveys.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11433-013-5083-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2013-06, Vol.56 (6), p.1227-1234
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_miscellaneous_1427001524
source SpringerLink (Online service); Alma/SFX Local Collection
subjects Astronomy
Classical and Continuum Physics
Classification
K-近邻
Observations and Techniques
Physics
Physics and Astronomy
Quasars
Sky surveys (astronomy)
Spectral classification
Support vector machines
SVM
光谱分类
支持向量机
星级
泛化能力
类星体
预测精度
title A SVM-kNN method for quasar-star classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SVM-kNN%20method%20for%20quasar-star%20classification&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Peng,%20NanBo&rft.date=2013-06-01&rft.volume=56&rft.issue=6&rft.spage=1227&rft.epage=1234&rft.pages=1227-1234&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-013-5083-8&rft_dat=%3Cproquest_cross%3E2918606868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918606868&rft_id=info:pmid/&rft_cqvip_id=45814354&rfr_iscdi=true