Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures

Abstract Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e ., the combination of electrospinning and twin screw extrusion (TSE) techniques w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2013-11, Vol.34 (33), p.8203-8212
Hauptverfasser: Chen, Xuening, Ergun, Asli, Gevgilili, Halil, Ozkan, Seher, Kalyon, Dilhan M, Wang, Hongjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8212
container_issue 33
container_start_page 8203
container_title Biomaterials
container_volume 34
creator Chen, Xuening
Ergun, Asli
Gevgilili, Halil
Ozkan, Seher
Kalyon, Dilhan M
Wang, Hongjun
description Abstract Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e ., the combination of electrospinning and twin screw extrusion (TSE) techniques was used to fabricate a microfilament/nanofiber shell–core scaffold that could precisely control the spatial distribution of different types of cells to form vascularized osteon-like structures. The scaffold contained a helical outer shell consisting of porous microfilament coils of polycaprolactone (PCL) and biphasic calcium phosphates (BCP) that wound around a hollow electrospun PCL nanofibrous tube (the core). The porous helical shell supported the formation of bone-like tissues, while the luminal surface of nanofibrous core enabled endothelialization to mimic the function of Haversian canal. Culture of mouse pre-osteoblasts (POBs, MC 3T3-E1) onto the coil shells revealed that coils with pitch sizes greater than 135 μm, in the presence of BCP, favored the proliferation and osteogenic differentiation of POBs. The luminal surface of PCL nanofibrous core supported the adhesion and spreading of mouse endothelial cells (ECs, MS-1) to form a continuous endothelial lining with the function similar to blood vessels. Taken together, the shell–core bi-layered scaffolds with porous, coil-like shell and nanofibrous tubular cores represent a new scaffolding technology base for the creation of osteon analogs.
doi_str_mv 10.1016/j.biomaterials.2013.07.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1426513783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014296121300817X</els_id><sourcerecordid>1426513783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-1f7b24417b2b407dd53db734e260e0f5b424af63b436385d0547848ed8cd8f673</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EotvCV0ARJy4J4z-JvRyQUIGCVIlDAXGzHHtcvPXGxU4qLZ8eR1sQ4sRlrJHem-f5DSHPKXQU6PBy140h7c2MOZhYOgaUdyA74P0DsqFKqrbfQv-QbIAK1m4Hyk7IaSk7qD0I9picMK62AwDbkK9X3zHG1qaMzRjaaA6Y0TXFGu9TdKXxKTc4XYcJa9x03STf3Jlil2hy-FmVqcyYpjaGG2zKnBc7LxnLE_LI17_h0_v3jHx5_-7z-Yf28tPFx_M3l60VvJ9b6uXIhKC1jgKkcz13o-QC2QAIvh8FE8YPfBR84Kp30AuphEKnrFN-kPyMvDjOvc3px4Jl1vtQbN3ITJiWoiuAoadcKl6lr45Sm1MpGb2-zWFv8kFT0CtXvdN_c9UrVw1SV67V_Ow-Zxn36P5Yf4OsgrdHAdZt7wJmXWzAyaILGe2sXQr_l_P6nzE2hilYE2_wgGWXljytHqoL06Cv1guvB6YcQFH5jf8ChO6l4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426513783</pqid></control><display><type>article</type><title>Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Chen, Xuening ; Ergun, Asli ; Gevgilili, Halil ; Ozkan, Seher ; Kalyon, Dilhan M ; Wang, Hongjun</creator><creatorcontrib>Chen, Xuening ; Ergun, Asli ; Gevgilili, Halil ; Ozkan, Seher ; Kalyon, Dilhan M ; Wang, Hongjun</creatorcontrib><description>Abstract Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e ., the combination of electrospinning and twin screw extrusion (TSE) techniques was used to fabricate a microfilament/nanofiber shell–core scaffold that could precisely control the spatial distribution of different types of cells to form vascularized osteon-like structures. The scaffold contained a helical outer shell consisting of porous microfilament coils of polycaprolactone (PCL) and biphasic calcium phosphates (BCP) that wound around a hollow electrospun PCL nanofibrous tube (the core). The porous helical shell supported the formation of bone-like tissues, while the luminal surface of nanofibrous core enabled endothelialization to mimic the function of Haversian canal. Culture of mouse pre-osteoblasts (POBs, MC 3T3-E1) onto the coil shells revealed that coils with pitch sizes greater than 135 μm, in the presence of BCP, favored the proliferation and osteogenic differentiation of POBs. The luminal surface of PCL nanofibrous core supported the adhesion and spreading of mouse endothelial cells (ECs, MS-1) to form a continuous endothelial lining with the function similar to blood vessels. Taken together, the shell–core bi-layered scaffolds with porous, coil-like shell and nanofibrous tubular cores represent a new scaffolding technology base for the creation of osteon analogs.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2013.07.035</identifier><identifier>PMID: 23896002</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Cell Line ; Cortical bone ; Dentistry ; Electrospinning ; Hydroxyapatites - chemistry ; Mice ; Osteon ; Polyesters - chemistry ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Twin screw extrusion ; Vascularization</subject><ispartof>Biomaterials, 2013-11, Vol.34 (33), p.8203-8212</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-1f7b24417b2b407dd53db734e260e0f5b424af63b436385d0547848ed8cd8f673</citedby><cites>FETCH-LOGICAL-c435t-1f7b24417b2b407dd53db734e260e0f5b424af63b436385d0547848ed8cd8f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S014296121300817X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23896002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Ergun, Asli</creatorcontrib><creatorcontrib>Gevgilili, Halil</creatorcontrib><creatorcontrib>Ozkan, Seher</creatorcontrib><creatorcontrib>Kalyon, Dilhan M</creatorcontrib><creatorcontrib>Wang, Hongjun</creatorcontrib><title>Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e ., the combination of electrospinning and twin screw extrusion (TSE) techniques was used to fabricate a microfilament/nanofiber shell–core scaffold that could precisely control the spatial distribution of different types of cells to form vascularized osteon-like structures. The scaffold contained a helical outer shell consisting of porous microfilament coils of polycaprolactone (PCL) and biphasic calcium phosphates (BCP) that wound around a hollow electrospun PCL nanofibrous tube (the core). The porous helical shell supported the formation of bone-like tissues, while the luminal surface of nanofibrous core enabled endothelialization to mimic the function of Haversian canal. Culture of mouse pre-osteoblasts (POBs, MC 3T3-E1) onto the coil shells revealed that coils with pitch sizes greater than 135 μm, in the presence of BCP, favored the proliferation and osteogenic differentiation of POBs. The luminal surface of PCL nanofibrous core supported the adhesion and spreading of mouse endothelial cells (ECs, MS-1) to form a continuous endothelial lining with the function similar to blood vessels. Taken together, the shell–core bi-layered scaffolds with porous, coil-like shell and nanofibrous tubular cores represent a new scaffolding technology base for the creation of osteon analogs.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cortical bone</subject><subject>Dentistry</subject><subject>Electrospinning</subject><subject>Hydroxyapatites - chemistry</subject><subject>Mice</subject><subject>Osteon</subject><subject>Polyesters - chemistry</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Twin screw extrusion</subject><subject>Vascularization</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9v1DAQxS0EotvCV0ARJy4J4z-JvRyQUIGCVIlDAXGzHHtcvPXGxU4qLZ8eR1sQ4sRlrJHem-f5DSHPKXQU6PBy140h7c2MOZhYOgaUdyA74P0DsqFKqrbfQv-QbIAK1m4Hyk7IaSk7qD0I9picMK62AwDbkK9X3zHG1qaMzRjaaA6Y0TXFGu9TdKXxKTc4XYcJa9x03STf3Jlil2hy-FmVqcyYpjaGG2zKnBc7LxnLE_LI17_h0_v3jHx5_-7z-Yf28tPFx_M3l60VvJ9b6uXIhKC1jgKkcz13o-QC2QAIvh8FE8YPfBR84Kp30AuphEKnrFN-kPyMvDjOvc3px4Jl1vtQbN3ITJiWoiuAoadcKl6lr45Sm1MpGb2-zWFv8kFT0CtXvdN_c9UrVw1SV67V_Ow-Zxn36P5Yf4OsgrdHAdZt7wJmXWzAyaILGe2sXQr_l_P6nzE2hilYE2_wgGWXljytHqoL06Cv1guvB6YcQFH5jf8ChO6l4A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Chen, Xuening</creator><creator>Ergun, Asli</creator><creator>Gevgilili, Halil</creator><creator>Ozkan, Seher</creator><creator>Kalyon, Dilhan M</creator><creator>Wang, Hongjun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures</title><author>Chen, Xuening ; Ergun, Asli ; Gevgilili, Halil ; Ozkan, Seher ; Kalyon, Dilhan M ; Wang, Hongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-1f7b24417b2b407dd53db734e260e0f5b424af63b436385d0547848ed8cd8f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cortical bone</topic><topic>Dentistry</topic><topic>Electrospinning</topic><topic>Hydroxyapatites - chemistry</topic><topic>Mice</topic><topic>Osteon</topic><topic>Polyesters - chemistry</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Twin screw extrusion</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuening</creatorcontrib><creatorcontrib>Ergun, Asli</creatorcontrib><creatorcontrib>Gevgilili, Halil</creatorcontrib><creatorcontrib>Ozkan, Seher</creatorcontrib><creatorcontrib>Kalyon, Dilhan M</creatorcontrib><creatorcontrib>Wang, Hongjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuening</au><au>Ergun, Asli</au><au>Gevgilili, Halil</au><au>Ozkan, Seher</au><au>Kalyon, Dilhan M</au><au>Wang, Hongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>34</volume><issue>33</issue><spage>8203</spage><epage>8212</epage><pages>8203-8212</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Bottom-up assembly of osteon-like structures into large tissue constructs represents a promising and practical strategy toward the formation of hierarchical cortical bone. Here, a unique two-step approach, i.e ., the combination of electrospinning and twin screw extrusion (TSE) techniques was used to fabricate a microfilament/nanofiber shell–core scaffold that could precisely control the spatial distribution of different types of cells to form vascularized osteon-like structures. The scaffold contained a helical outer shell consisting of porous microfilament coils of polycaprolactone (PCL) and biphasic calcium phosphates (BCP) that wound around a hollow electrospun PCL nanofibrous tube (the core). The porous helical shell supported the formation of bone-like tissues, while the luminal surface of nanofibrous core enabled endothelialization to mimic the function of Haversian canal. Culture of mouse pre-osteoblasts (POBs, MC 3T3-E1) onto the coil shells revealed that coils with pitch sizes greater than 135 μm, in the presence of BCP, favored the proliferation and osteogenic differentiation of POBs. The luminal surface of PCL nanofibrous core supported the adhesion and spreading of mouse endothelial cells (ECs, MS-1) to form a continuous endothelial lining with the function similar to blood vessels. Taken together, the shell–core bi-layered scaffolds with porous, coil-like shell and nanofibrous tubular cores represent a new scaffolding technology base for the creation of osteon analogs.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23896002</pmid><doi>10.1016/j.biomaterials.2013.07.035</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2013-11, Vol.34 (33), p.8203-8212
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1426513783
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Cell Line
Cortical bone
Dentistry
Electrospinning
Hydroxyapatites - chemistry
Mice
Osteon
Polyesters - chemistry
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Twin screw extrusion
Vascularization
title Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shell-core%20bi-layered%20scaffolds%20for%20engineering%20of%20vascularized%20osteon-like%20structures&rft.jtitle=Biomaterials&rft.au=Chen,%20Xuening&rft.date=2013-11-01&rft.volume=34&rft.issue=33&rft.spage=8203&rft.epage=8212&rft.pages=8203-8212&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2013.07.035&rft_dat=%3Cproquest_cross%3E1426513783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426513783&rft_id=info:pmid/23896002&rft_els_id=S014296121300817X&rfr_iscdi=true