Adequate margin definition for scanned particle therapy in the incidence of intrafractional motion

Advanced 4D dose calculations (4DDCs) for scanned particle therapy show that in the incidence of motion, it is insufficient to use target contours defined on one reference CT phase. ICRU Report 62 (ICRU 1999 ICRU Report 62 (Bethesda, MD: ICRU)) advises that variations in size, shape and position of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2013-09, Vol.58 (17), p.6079-6094
Hauptverfasser: Knopf, Antje-Christin, Boye, Dirk, Lomax, Antony, Mori, Shininchiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Advanced 4D dose calculations (4DDCs) for scanned particle therapy show that in the incidence of motion, it is insufficient to use target contours defined on one reference CT phase. ICRU Report 62 (ICRU 1999 ICRU Report 62 (Bethesda, MD: ICRU)) advises that variations in size, shape and position of CTVs relative to anatomic reference points have to be considered for internal target volumes (ITVs). In addition to geometrical margin adaption, changes of water equivalent path length have to be considered for particle therapy. Different ITV concepts have been applied to six representative patients (liver and lung indications) based on 4DCT. Geometrical ITVs (gITV) were calculated by combining deformed CTVs over all motion phases. To take into account path length changes, range adapted ITVs (raITV) were established as the union of range adapted CTVs in all phases. For gated delivery, gat_gITVs and gat_raITVs were calculated. Extensive 4DDCs have been performed for two exemplary patients to illustrate that neither re-scanning nor gating can sufficiently compensate for motion effects if no appropriate margins are employed and to evaluate the effectiveness of gITVs and raITVs. CTVs significantly differ from gITVs and raITVs in size (up to a factor 2 in volume). But also raITVs and gITVs differ significantly in size and are spatially displaced, particularly for lung patients. raITVs show a strong field dependence in shape. All volumes are reduced in size when gating is applied and considered during margin adaption. 4D dose distributions show big improvements when gITV or raITV are used compared to CTVs. However, the use of either gITVs or raITVs do not result in significant differences. If raITVs are used, slightly better target coverage is gained at the cost of more healthy tissue exposure. Our results emphasize that adapted target volumes have to be used for scanned particle therapy in the presence of motion. However, even though gITVs and raITVs differ significantly in shape and size, this difference does not necessarily translate into significant differences in the resultant 4D dose distributions.
ISSN:0031-9155
1361-6560
DOI:10.1088/0031-9155/58/17/6079