Deterministic quantum teleportation with feed-forward in a solid state system
Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Pre...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-08, Vol.500 (7462), p.319-322 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 7462 |
container_start_page | 319 |
container_title | Nature (London) |
container_volume | 500 |
creator | Steffen, L. Salathe, Y. Oppliger, M. Kurpiers, P. Baur, M. Lang, C. Eichler, C. Puebla-Hellmann, G. Fedorov, A. Wallraff, A. |
description | Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems.
Efficient teleportation on demand
Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of
Nature
have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda
et al
. describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen
et al
. report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies.
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science
1
,
2
,
3
. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates
4
, the creation of complex entangled states
5
,
6
and the demonstration of algorithms
7
or error correction
8
. Using different variants of low-noise parametric amplifiers
9
, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous
10
and discrete
11
feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture
12
,
13
,
14
. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to cr |
doi_str_mv | 10.1038/nature12422 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1426510687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632496156</galeid><sourcerecordid>A632496156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</originalsourceid><addsrcrecordid>eNp10l1v0zAUBmALgVgpXHGPIhDSEGT4O8ll1fExaYAEQ1xGp85J8ZQ4re1o7N_jaYW1KMgXluzHr4_sQ8hTRk8YFeVbB3H0yLjk_B6ZMVnoXOqyuE9mlPIyp6XQR-RRCJeUUsUK-ZAccVEpxQWbkU-nGNH31tkQrcm2I7g49lnEDjeDjxDt4LIrG39mLWKTt4O_At9k1mWQhaGzTRYSwixch4j9Y_KghS7gk908J9_fv7tYfszPv3w4Wy7Oc6NKHXPJKVJNBchUttAGV5VaNaIyBdcGAFeowSjKpIRKVFJTzhsmdMO4YaYBIebk-DZ344ftiCHWvQ0Guw4cDmOomeRaMZpeIdEX_9DLYfQuVZeU0JUStGJ3ag0d1ta1Q_RgbkLrhRZcVpopnVQ-odbo0EM3OGxtWj7wzye82dhtvY9OJlAaDfbWTKa-OjiQTMRfcQ1jCPXZt6-H9vX_7eLix_LzpDZ-CMFjW2-87cFf14zWN71W7_Va0s92Lzuuemz-2j_NlcDLHYBgoGs9OGPDnSu0UkWKnZM3ty6kLbdGv_dFE_f-BmI05lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436953091</pqid></control><display><type>article</type><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</creator><creatorcontrib>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</creatorcontrib><description>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems.
Efficient teleportation on demand
Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of
Nature
have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda
et al
. describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen
et al
. report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies.
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science
1
,
2
,
3
. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates
4
, the creation of complex entangled states
5
,
6
and the demonstration of algorithms
7
or error correction
8
. Using different variants of low-noise parametric amplifiers
9
, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous
10
and discrete
11
feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture
12
,
13
,
14
. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10
4
s
−1
, exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12422</identifier><identifier>PMID: 23955231</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1081 ; 639/766/119/1003 ; 639/766/483/2802 ; 639/766/483/481 ; Analysis ; Atoms & subatomic particles ; Classical and quantum physics: mechanics and fields ; Efficiency ; Exact sciences and technology ; Experiments ; Feedforward control systems ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; letter ; Methods ; multidisciplinary ; Optical elements, devices, and systems ; Optical waveguides and coupleurs ; Optics ; Physics ; Quantum communication ; Quantum information ; Quantum teleportation ; Quantum theory ; Science ; Solid state electronics ; Tomography ; Topology</subject><ispartof>Nature (London), 2013-08, Vol.500 (7462), p.319-322</ispartof><rights>Springer Nature Limited 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</citedby><cites>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12422$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12422$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27655710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23955231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steffen, L.</creatorcontrib><creatorcontrib>Salathe, Y.</creatorcontrib><creatorcontrib>Oppliger, M.</creatorcontrib><creatorcontrib>Kurpiers, P.</creatorcontrib><creatorcontrib>Baur, M.</creatorcontrib><creatorcontrib>Lang, C.</creatorcontrib><creatorcontrib>Eichler, C.</creatorcontrib><creatorcontrib>Puebla-Hellmann, G.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Wallraff, A.</creatorcontrib><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems.
Efficient teleportation on demand
Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of
Nature
have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda
et al
. describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen
et al
. report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies.
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science
1
,
2
,
3
. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates
4
, the creation of complex entangled states
5
,
6
and the demonstration of algorithms
7
or error correction
8
. Using different variants of low-noise parametric amplifiers
9
, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous
10
and discrete
11
feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture
12
,
13
,
14
. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10
4
s
−1
, exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</description><subject>639/624/1075/1081</subject><subject>639/766/119/1003</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Analysis</subject><subject>Atoms & subatomic particles</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Efficiency</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Feedforward control systems</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Optical elements, devices, and systems</subject><subject>Optical waveguides and coupleurs</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum communication</subject><subject>Quantum information</subject><subject>Quantum teleportation</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Solid state electronics</subject><subject>Tomography</subject><subject>Topology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1v0zAUBmALgVgpXHGPIhDSEGT4O8ll1fExaYAEQ1xGp85J8ZQ4re1o7N_jaYW1KMgXluzHr4_sQ8hTRk8YFeVbB3H0yLjk_B6ZMVnoXOqyuE9mlPIyp6XQR-RRCJeUUsUK-ZAccVEpxQWbkU-nGNH31tkQrcm2I7g49lnEDjeDjxDt4LIrG39mLWKTt4O_At9k1mWQhaGzTRYSwixch4j9Y_KghS7gk908J9_fv7tYfszPv3w4Wy7Oc6NKHXPJKVJNBchUttAGV5VaNaIyBdcGAFeowSjKpIRKVFJTzhsmdMO4YaYBIebk-DZ344ftiCHWvQ0Guw4cDmOomeRaMZpeIdEX_9DLYfQuVZeU0JUStGJ3ag0d1ta1Q_RgbkLrhRZcVpopnVQ-odbo0EM3OGxtWj7wzye82dhtvY9OJlAaDfbWTKa-OjiQTMRfcQ1jCPXZt6-H9vX_7eLix_LzpDZ-CMFjW2-87cFf14zWN71W7_Va0s92Lzuuemz-2j_NlcDLHYBgoGs9OGPDnSu0UkWKnZM3ty6kLbdGv_dFE_f-BmI05lw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Steffen, L.</creator><creator>Salathe, Y.</creator><creator>Oppliger, M.</creator><creator>Kurpiers, P.</creator><creator>Baur, M.</creator><creator>Lang, C.</creator><creator>Eichler, C.</creator><creator>Puebla-Hellmann, G.</creator><creator>Fedorov, A.</creator><creator>Wallraff, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><author>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/1075/1081</topic><topic>639/766/119/1003</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Analysis</topic><topic>Atoms & subatomic particles</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Efficiency</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Feedforward control systems</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Optical elements, devices, and systems</topic><topic>Optical waveguides and coupleurs</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum communication</topic><topic>Quantum information</topic><topic>Quantum teleportation</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Solid state electronics</topic><topic>Tomography</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steffen, L.</creatorcontrib><creatorcontrib>Salathe, Y.</creatorcontrib><creatorcontrib>Oppliger, M.</creatorcontrib><creatorcontrib>Kurpiers, P.</creatorcontrib><creatorcontrib>Baur, M.</creatorcontrib><creatorcontrib>Lang, C.</creatorcontrib><creatorcontrib>Eichler, C.</creatorcontrib><creatorcontrib>Puebla-Hellmann, G.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Wallraff, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steffen, L.</au><au>Salathe, Y.</au><au>Oppliger, M.</au><au>Kurpiers, P.</au><au>Baur, M.</au><au>Lang, C.</au><au>Eichler, C.</au><au>Puebla-Hellmann, G.</au><au>Fedorov, A.</au><au>Wallraff, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic quantum teleportation with feed-forward in a solid state system</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>500</volume><issue>7462</issue><spage>319</spage><epage>322</epage><pages>319-322</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems.
Efficient teleportation on demand
Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of
Nature
have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda
et al
. describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen
et al
. report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies.
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science
1
,
2
,
3
. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates
4
, the creation of complex entangled states
5
,
6
and the demonstration of algorithms
7
or error correction
8
. Using different variants of low-noise parametric amplifiers
9
, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous
10
and discrete
11
feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture
12
,
13
,
14
. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10
4
s
−1
, exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23955231</pmid><doi>10.1038/nature12422</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-08, Vol.500 (7462), p.319-322 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1426510687 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/624/1075/1081 639/766/119/1003 639/766/483/2802 639/766/483/481 Analysis Atoms & subatomic particles Classical and quantum physics: mechanics and fields Efficiency Exact sciences and technology Experiments Feedforward control systems Fundamental areas of phenomenology (including applications) Humanities and Social Sciences letter Methods multidisciplinary Optical elements, devices, and systems Optical waveguides and coupleurs Optics Physics Quantum communication Quantum information Quantum teleportation Quantum theory Science Solid state electronics Tomography Topology |
title | Deterministic quantum teleportation with feed-forward in a solid state system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20quantum%20teleportation%20with%20feed-forward%20in%20a%20solid%20state%20system&rft.jtitle=Nature%20(London)&rft.au=Steffen,%20L.&rft.date=2013-08-01&rft.volume=500&rft.issue=7462&rft.spage=319&rft.epage=322&rft.pages=319-322&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12422&rft_dat=%3Cgale_proqu%3EA632496156%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436953091&rft_id=info:pmid/23955231&rft_galeid=A632496156&rfr_iscdi=true |