Deterministic quantum teleportation with feed-forward in a solid state system

Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-08, Vol.500 (7462), p.319-322
Hauptverfasser: Steffen, L., Salathe, Y., Oppliger, M., Kurpiers, P., Baur, M., Lang, C., Eichler, C., Puebla-Hellmann, G., Fedorov, A., Wallraff, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 7462
container_start_page 319
container_title Nature (London)
container_volume 500
creator Steffen, L.
Salathe, Y.
Oppliger, M.
Kurpiers, P.
Baur, M.
Lang, C.
Eichler, C.
Puebla-Hellmann, G.
Fedorov, A.
Wallraff, A.
description Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of Nature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda et al . describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen et al . report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies. Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science 1 , 2 , 3 . At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates 4 , the creation of complex entangled states 5 , 6 and the demonstration of algorithms 7 or error correction 8 . Using different variants of low-noise parametric amplifiers 9 , dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous 10 and discrete 11 feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture 12 , 13 , 14 . We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to cr
doi_str_mv 10.1038/nature12422
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1426510687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632496156</galeid><sourcerecordid>A632496156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</originalsourceid><addsrcrecordid>eNp10l1v0zAUBmALgVgpXHGPIhDSEGT4O8ll1fExaYAEQ1xGp85J8ZQ4re1o7N_jaYW1KMgXluzHr4_sQ8hTRk8YFeVbB3H0yLjk_B6ZMVnoXOqyuE9mlPIyp6XQR-RRCJeUUsUK-ZAccVEpxQWbkU-nGNH31tkQrcm2I7g49lnEDjeDjxDt4LIrG39mLWKTt4O_At9k1mWQhaGzTRYSwixch4j9Y_KghS7gk908J9_fv7tYfszPv3w4Wy7Oc6NKHXPJKVJNBchUttAGV5VaNaIyBdcGAFeowSjKpIRKVFJTzhsmdMO4YaYBIebk-DZ344ftiCHWvQ0Guw4cDmOomeRaMZpeIdEX_9DLYfQuVZeU0JUStGJ3ag0d1ta1Q_RgbkLrhRZcVpopnVQ-odbo0EM3OGxtWj7wzye82dhtvY9OJlAaDfbWTKa-OjiQTMRfcQ1jCPXZt6-H9vX_7eLix_LzpDZ-CMFjW2-87cFf14zWN71W7_Va0s92Lzuuemz-2j_NlcDLHYBgoGs9OGPDnSu0UkWKnZM3ty6kLbdGv_dFE_f-BmI05lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436953091</pqid></control><display><type>article</type><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</creator><creatorcontrib>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</creatorcontrib><description>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of Nature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda et al . describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen et al . report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies. Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science 1 , 2 , 3 . At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates 4 , the creation of complex entangled states 5 , 6 and the demonstration of algorithms 7 or error correction 8 . Using different variants of low-noise parametric amplifiers 9 , dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous 10 and discrete 11 feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture 12 , 13 , 14 . We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10 4  s −1 , exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12422</identifier><identifier>PMID: 23955231</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1081 ; 639/766/119/1003 ; 639/766/483/2802 ; 639/766/483/481 ; Analysis ; Atoms &amp; subatomic particles ; Classical and quantum physics: mechanics and fields ; Efficiency ; Exact sciences and technology ; Experiments ; Feedforward control systems ; Fundamental areas of phenomenology (including applications) ; Humanities and Social Sciences ; letter ; Methods ; multidisciplinary ; Optical elements, devices, and systems ; Optical waveguides and coupleurs ; Optics ; Physics ; Quantum communication ; Quantum information ; Quantum teleportation ; Quantum theory ; Science ; Solid state electronics ; Tomography ; Topology</subject><ispartof>Nature (London), 2013-08, Vol.500 (7462), p.319-322</ispartof><rights>Springer Nature Limited 2013</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 15, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</citedby><cites>FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12422$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12422$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27655710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23955231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steffen, L.</creatorcontrib><creatorcontrib>Salathe, Y.</creatorcontrib><creatorcontrib>Oppliger, M.</creatorcontrib><creatorcontrib>Kurpiers, P.</creatorcontrib><creatorcontrib>Baur, M.</creatorcontrib><creatorcontrib>Lang, C.</creatorcontrib><creatorcontrib>Eichler, C.</creatorcontrib><creatorcontrib>Puebla-Hellmann, G.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Wallraff, A.</creatorcontrib><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of Nature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda et al . describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen et al . report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies. Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science 1 , 2 , 3 . At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates 4 , the creation of complex entangled states 5 , 6 and the demonstration of algorithms 7 or error correction 8 . Using different variants of low-noise parametric amplifiers 9 , dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous 10 and discrete 11 feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture 12 , 13 , 14 . We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10 4  s −1 , exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</description><subject>639/624/1075/1081</subject><subject>639/766/119/1003</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Analysis</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Efficiency</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Feedforward control systems</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Methods</subject><subject>multidisciplinary</subject><subject>Optical elements, devices, and systems</subject><subject>Optical waveguides and coupleurs</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum communication</subject><subject>Quantum information</subject><subject>Quantum teleportation</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Solid state electronics</subject><subject>Tomography</subject><subject>Topology</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1v0zAUBmALgVgpXHGPIhDSEGT4O8ll1fExaYAEQ1xGp85J8ZQ4re1o7N_jaYW1KMgXluzHr4_sQ8hTRk8YFeVbB3H0yLjk_B6ZMVnoXOqyuE9mlPIyp6XQR-RRCJeUUsUK-ZAccVEpxQWbkU-nGNH31tkQrcm2I7g49lnEDjeDjxDt4LIrG39mLWKTt4O_At9k1mWQhaGzTRYSwixch4j9Y_KghS7gk908J9_fv7tYfszPv3w4Wy7Oc6NKHXPJKVJNBchUttAGV5VaNaIyBdcGAFeowSjKpIRKVFJTzhsmdMO4YaYBIebk-DZ344ftiCHWvQ0Guw4cDmOomeRaMZpeIdEX_9DLYfQuVZeU0JUStGJ3ag0d1ta1Q_RgbkLrhRZcVpopnVQ-odbo0EM3OGxtWj7wzye82dhtvY9OJlAaDfbWTKa-OjiQTMRfcQ1jCPXZt6-H9vX_7eLix_LzpDZ-CMFjW2-87cFf14zWN71W7_Va0s92Lzuuemz-2j_NlcDLHYBgoGs9OGPDnSu0UkWKnZM3ty6kLbdGv_dFE_f-BmI05lw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Steffen, L.</creator><creator>Salathe, Y.</creator><creator>Oppliger, M.</creator><creator>Kurpiers, P.</creator><creator>Baur, M.</creator><creator>Lang, C.</creator><creator>Eichler, C.</creator><creator>Puebla-Hellmann, G.</creator><creator>Fedorov, A.</creator><creator>Wallraff, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Deterministic quantum teleportation with feed-forward in a solid state system</title><author>Steffen, L. ; Salathe, Y. ; Oppliger, M. ; Kurpiers, P. ; Baur, M. ; Lang, C. ; Eichler, C. ; Puebla-Hellmann, G. ; Fedorov, A. ; Wallraff, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-420e0603a4e1236ceb95bd39c726caaebe6ac50144a93946022d136d12c1cda33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/624/1075/1081</topic><topic>639/766/119/1003</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Analysis</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Efficiency</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Feedforward control systems</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Methods</topic><topic>multidisciplinary</topic><topic>Optical elements, devices, and systems</topic><topic>Optical waveguides and coupleurs</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum communication</topic><topic>Quantum information</topic><topic>Quantum teleportation</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Solid state electronics</topic><topic>Tomography</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steffen, L.</creatorcontrib><creatorcontrib>Salathe, Y.</creatorcontrib><creatorcontrib>Oppliger, M.</creatorcontrib><creatorcontrib>Kurpiers, P.</creatorcontrib><creatorcontrib>Baur, M.</creatorcontrib><creatorcontrib>Lang, C.</creatorcontrib><creatorcontrib>Eichler, C.</creatorcontrib><creatorcontrib>Puebla-Hellmann, G.</creatorcontrib><creatorcontrib>Fedorov, A.</creatorcontrib><creatorcontrib>Wallraff, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steffen, L.</au><au>Salathe, Y.</au><au>Oppliger, M.</au><au>Kurpiers, P.</au><au>Baur, M.</au><au>Lang, C.</au><au>Eichler, C.</au><au>Puebla-Hellmann, G.</au><au>Fedorov, A.</au><au>Wallraff, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic quantum teleportation with feed-forward in a solid state system</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>500</volume><issue>7462</issue><spage>319</spage><epage>322</epage><pages>319-322</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Superconducting circuits combined with real-time feed-forward electronics are used to teleport a quantum state between two macroscopic solid-state systems. Efficient teleportation on demand Quantum teleportation is one of the most important elementary protocols in quantum information processing. Previous studies have achieved quantum teleportation, but usually randomly and at low rates. Two groups reporting in this issue of Nature have used contrasting methods to achieve the same aim —more efficient quantum teleportation. Takeda et al . describe the experimental realization of fully deterministic, unconditional quantum teleportation of photonic qubits — an optimum choice for information carrying — with overall transfer fidelities exceeding the classical limit of teleportation. The technique may facilitate the development of large-scale optical quantum networks. Steffen et al . report quantum teleportation in a solid-state system, achieving deterministic quantum teleportation in a chip-based superconducting circuit architecture. They teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10,000 per second, exceeding other reported implementations. Transmission loss in superconducting waveguides is low, so this system should be scalable to significantly larger distances, a step towards quantum communication at microwave frequencies. Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science 1 , 2 , 3 . At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates 4 , the creation of complex entangled states 5 , 6 and the demonstration of algorithms 7 or error correction 8 . Using different variants of low-noise parametric amplifiers 9 , dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous 10 and discrete 11 feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture 12 , 13 , 14 . We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10 4  s −1 , exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23955231</pmid><doi>10.1038/nature12422</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-08, Vol.500 (7462), p.319-322
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_1426510687
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/624/1075/1081
639/766/119/1003
639/766/483/2802
639/766/483/481
Analysis
Atoms & subatomic particles
Classical and quantum physics: mechanics and fields
Efficiency
Exact sciences and technology
Experiments
Feedforward control systems
Fundamental areas of phenomenology (including applications)
Humanities and Social Sciences
letter
Methods
multidisciplinary
Optical elements, devices, and systems
Optical waveguides and coupleurs
Optics
Physics
Quantum communication
Quantum information
Quantum teleportation
Quantum theory
Science
Solid state electronics
Tomography
Topology
title Deterministic quantum teleportation with feed-forward in a solid state system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20quantum%20teleportation%20with%20feed-forward%20in%20a%20solid%20state%20system&rft.jtitle=Nature%20(London)&rft.au=Steffen,%20L.&rft.date=2013-08-01&rft.volume=500&rft.issue=7462&rft.spage=319&rft.epage=322&rft.pages=319-322&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12422&rft_dat=%3Cgale_proqu%3EA632496156%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436953091&rft_id=info:pmid/23955231&rft_galeid=A632496156&rfr_iscdi=true