Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations
The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic ener...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7502-7522 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7522 |
---|---|
container_issue | 32 |
container_start_page | 7502 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 117 |
creator | Marquardt, Roberto Sagui, Kenneth Zheng, Jingjing Thiel, Walter Luckhaus, David Yurchenko, Sergey Mariotti, Fabio Quack, Martin |
description | The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)NH2 + (2S1/2)H) and 38 450 hc cm–1 (for NH3 → (3Σ–)NH +(1Σg +)H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given. |
doi_str_mv | 10.1021/jp4016728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1426010649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426010649</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-c507b5d704caec2755abe1042a26d21b470364973ed78f8db87d5f5b1d40005e3</originalsourceid><addsrcrecordid>eNpFkU1PGzEQhq2Kqnz10D-AfEHisq3ttdebI4pCghQBEnBezXpnwZFjB9uLmn9fV6TlNM_h0Tuadwj5wdlPzgT_tdlJxhst2i_khCvBKiW4OirM2lmlmnp2TE5T2jDGeC3kN3Is6qZtmZQn5PfShR4cvfbg9tmagg8ho8-20MJjfNnTxymOYJCOIdL8inTh0OQYvDV0GcPkB_qYISMNI71b1XSMYUtX9uWVrvEdHYWe3nqbbaBzcGZyUNCnc_J1BJfw-2GekeebxdN8Va3vl7fz63UFQvNcGcV0rwbNpAE0QisFPXImBYhmELyXmtWNnOkaB92O7dC3elCj6vkgy7kK6zNy9ZG7i-FtwpS7rU0GnQOPYUodl6JhnJWMol4c1Knf4tDtot1C3Hf_2irC5UGAVJoaI3hj06enG63bRnx6YFK3CVMs5ZZNrPv7re7_t-o_i--C5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426010649</pqid></control><display><type>article</type><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><source>American Chemical Society Journals</source><creator>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</creator><creatorcontrib>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</creatorcontrib><description>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)NH2 + (2S1/2)H) and 38 450 hc cm–1 (for NH3 → (3Σ–)NH +(1Σg +)H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp4016728</identifier><identifier>PMID: 23688044</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Ab initio calculations ; Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Coupled cluster theory ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; Physics</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7502-7522</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4016728$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4016728$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27677862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23688044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquardt, Roberto</creatorcontrib><creatorcontrib>Sagui, Kenneth</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Thiel, Walter</creatorcontrib><creatorcontrib>Luckhaus, David</creatorcontrib><creatorcontrib>Yurchenko, Sergey</creatorcontrib><creatorcontrib>Mariotti, Fabio</creatorcontrib><creatorcontrib>Quack, Martin</creatorcontrib><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)NH2 + (2S1/2)H) and 38 450 hc cm–1 (for NH3 → (3Σ–)NH +(1Σg +)H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</description><subject>Ab initio calculations</subject><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Coupled cluster theory</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PGzEQhq2Kqnz10D-AfEHisq3ttdebI4pCghQBEnBezXpnwZFjB9uLmn9fV6TlNM_h0Tuadwj5wdlPzgT_tdlJxhst2i_khCvBKiW4OirM2lmlmnp2TE5T2jDGeC3kN3Is6qZtmZQn5PfShR4cvfbg9tmagg8ho8-20MJjfNnTxymOYJCOIdL8inTh0OQYvDV0GcPkB_qYISMNI71b1XSMYUtX9uWVrvEdHYWe3nqbbaBzcGZyUNCnc_J1BJfw-2GekeebxdN8Va3vl7fz63UFQvNcGcV0rwbNpAE0QisFPXImBYhmELyXmtWNnOkaB92O7dC3elCj6vkgy7kK6zNy9ZG7i-FtwpS7rU0GnQOPYUodl6JhnJWMol4c1Knf4tDtot1C3Hf_2irC5UGAVJoaI3hj06enG63bRnx6YFK3CVMs5ZZNrPv7re7_t-o_i--C5g</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Marquardt, Roberto</creator><creator>Sagui, Kenneth</creator><creator>Zheng, Jingjing</creator><creator>Thiel, Walter</creator><creator>Luckhaus, David</creator><creator>Yurchenko, Sergey</creator><creator>Mariotti, Fabio</creator><creator>Quack, Martin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130815</creationdate><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><author>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-c507b5d704caec2755abe1042a26d21b470364973ed78f8db87d5f5b1d40005e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab initio calculations</topic><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Coupled cluster theory</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquardt, Roberto</creatorcontrib><creatorcontrib>Sagui, Kenneth</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Thiel, Walter</creatorcontrib><creatorcontrib>Luckhaus, David</creatorcontrib><creatorcontrib>Yurchenko, Sergey</creatorcontrib><creatorcontrib>Mariotti, Fabio</creatorcontrib><creatorcontrib>Quack, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquardt, Roberto</au><au>Sagui, Kenneth</au><au>Zheng, Jingjing</au><au>Thiel, Walter</au><au>Luckhaus, David</au><au>Yurchenko, Sergey</au><au>Mariotti, Fabio</au><au>Quack, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-08-15</date><risdate>2013</risdate><volume>117</volume><issue>32</issue><spage>7502</spage><epage>7522</epage><pages>7502-7522</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD(T)) and the method of multireference configuration interaction (MRCI). CCSD(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)NH2 + (2S1/2)H) and 38 450 hc cm–1 (for NH3 → (3Σ–)NH +(1Σg +)H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23688044</pmid><doi>10.1021/jp4016728</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7502-7522 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1426010649 |
source | American Chemical Society Journals |
subjects | Ab initio calculations Atomic and molecular physics Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) Coupled cluster theory Electronic structure of atoms, molecules and their ions: theory Exact sciences and technology Physics |
title | Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Analytical%20Potential%20Energy%20Surface%20for%20the%20Electronic%20Ground%20State%20of%20NH3%20from%20High%20Level%20ab%20Initio%20Calculations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Marquardt,%20Roberto&rft.date=2013-08-15&rft.volume=117&rft.issue=32&rft.spage=7502&rft.epage=7522&rft.pages=7502-7522&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp4016728&rft_dat=%3Cproquest_pubme%3E1426010649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426010649&rft_id=info:pmid/23688044&rfr_iscdi=true |