Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations

The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic ener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7502-7522
Hauptverfasser: Marquardt, Roberto, Sagui, Kenneth, Zheng, Jingjing, Thiel, Walter, Luckhaus, David, Yurchenko, Sergey, Mariotti, Fabio, Quack, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7522
container_issue 32
container_start_page 7502
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 117
creator Marquardt, Roberto
Sagui, Kenneth
Zheng, Jingjing
Thiel, Walter
Luckhaus, David
Yurchenko, Sergey
Mariotti, Fabio
Quack, Martin
description The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD­(T)) and the method of multireference configuration interaction (MRCI). CCSD­(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD­(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)­NH2 + (2S1/2)­H) and 38 450 hc cm–1 (for NH3 → (3Σ–)­NH +(1Σg +)­H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.
doi_str_mv 10.1021/jp4016728
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1426010649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426010649</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-c507b5d704caec2755abe1042a26d21b470364973ed78f8db87d5f5b1d40005e3</originalsourceid><addsrcrecordid>eNpFkU1PGzEQhq2Kqnz10D-AfEHisq3ttdebI4pCghQBEnBezXpnwZFjB9uLmn9fV6TlNM_h0Tuadwj5wdlPzgT_tdlJxhst2i_khCvBKiW4OirM2lmlmnp2TE5T2jDGeC3kN3Is6qZtmZQn5PfShR4cvfbg9tmagg8ho8-20MJjfNnTxymOYJCOIdL8inTh0OQYvDV0GcPkB_qYISMNI71b1XSMYUtX9uWVrvEdHYWe3nqbbaBzcGZyUNCnc_J1BJfw-2GekeebxdN8Va3vl7fz63UFQvNcGcV0rwbNpAE0QisFPXImBYhmELyXmtWNnOkaB92O7dC3elCj6vkgy7kK6zNy9ZG7i-FtwpS7rU0GnQOPYUodl6JhnJWMol4c1Knf4tDtot1C3Hf_2irC5UGAVJoaI3hj06enG63bRnx6YFK3CVMs5ZZNrPv7re7_t-o_i--C5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426010649</pqid></control><display><type>article</type><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><source>American Chemical Society Journals</source><creator>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</creator><creatorcontrib>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</creatorcontrib><description>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD­(T)) and the method of multireference configuration interaction (MRCI). CCSD­(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD­(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)­NH2 + (2S1/2)­H) and 38 450 hc cm–1 (for NH3 → (3Σ–)­NH +(1Σg +)­H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp4016728</identifier><identifier>PMID: 23688044</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Ab initio calculations ; Atomic and molecular physics ; Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations) ; Coupled cluster theory ; Electronic structure of atoms, molecules and their ions: theory ; Exact sciences and technology ; Physics</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2013-08, Vol.117 (32), p.7502-7522</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp4016728$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp4016728$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27677862$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23688044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marquardt, Roberto</creatorcontrib><creatorcontrib>Sagui, Kenneth</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Thiel, Walter</creatorcontrib><creatorcontrib>Luckhaus, David</creatorcontrib><creatorcontrib>Yurchenko, Sergey</creatorcontrib><creatorcontrib>Mariotti, Fabio</creatorcontrib><creatorcontrib>Quack, Martin</creatorcontrib><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD­(T)) and the method of multireference configuration interaction (MRCI). CCSD­(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD­(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)­NH2 + (2S1/2)­H) and 38 450 hc cm–1 (for NH3 → (3Σ–)­NH +(1Σg +)­H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</description><subject>Ab initio calculations</subject><subject>Atomic and molecular physics</subject><subject>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</subject><subject>Coupled cluster theory</subject><subject>Electronic structure of atoms, molecules and their ions: theory</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PGzEQhq2Kqnz10D-AfEHisq3ttdebI4pCghQBEnBezXpnwZFjB9uLmn9fV6TlNM_h0Tuadwj5wdlPzgT_tdlJxhst2i_khCvBKiW4OirM2lmlmnp2TE5T2jDGeC3kN3Is6qZtmZQn5PfShR4cvfbg9tmagg8ho8-20MJjfNnTxymOYJCOIdL8inTh0OQYvDV0GcPkB_qYISMNI71b1XSMYUtX9uWVrvEdHYWe3nqbbaBzcGZyUNCnc_J1BJfw-2GekeebxdN8Va3vl7fz63UFQvNcGcV0rwbNpAE0QisFPXImBYhmELyXmtWNnOkaB92O7dC3elCj6vkgy7kK6zNy9ZG7i-FtwpS7rU0GnQOPYUodl6JhnJWMol4c1Knf4tDtot1C3Hf_2irC5UGAVJoaI3hj06enG63bRnx6YFK3CVMs5ZZNrPv7re7_t-o_i--C5g</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Marquardt, Roberto</creator><creator>Sagui, Kenneth</creator><creator>Zheng, Jingjing</creator><creator>Thiel, Walter</creator><creator>Luckhaus, David</creator><creator>Yurchenko, Sergey</creator><creator>Mariotti, Fabio</creator><creator>Quack, Martin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130815</creationdate><title>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</title><author>Marquardt, Roberto ; Sagui, Kenneth ; Zheng, Jingjing ; Thiel, Walter ; Luckhaus, David ; Yurchenko, Sergey ; Mariotti, Fabio ; Quack, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-c507b5d704caec2755abe1042a26d21b470364973ed78f8db87d5f5b1d40005e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Ab initio calculations</topic><topic>Atomic and molecular physics</topic><topic>Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)</topic><topic>Coupled cluster theory</topic><topic>Electronic structure of atoms, molecules and their ions: theory</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marquardt, Roberto</creatorcontrib><creatorcontrib>Sagui, Kenneth</creatorcontrib><creatorcontrib>Zheng, Jingjing</creatorcontrib><creatorcontrib>Thiel, Walter</creatorcontrib><creatorcontrib>Luckhaus, David</creatorcontrib><creatorcontrib>Yurchenko, Sergey</creatorcontrib><creatorcontrib>Mariotti, Fabio</creatorcontrib><creatorcontrib>Quack, Martin</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marquardt, Roberto</au><au>Sagui, Kenneth</au><au>Zheng, Jingjing</au><au>Thiel, Walter</au><au>Luckhaus, David</au><au>Yurchenko, Sergey</au><au>Mariotti, Fabio</au><au>Quack, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2013-08-15</date><risdate>2013</risdate><volume>117</volume><issue>32</issue><spage>7502</spage><epage>7522</epage><pages>7502-7522</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The analytical, full-dimensional, and global representation of the potential energy surface of NH3 in the lowest adiabatic electronic state developed previously (Marquardt, R.; et al. J. Phys. Chem. B 2005, 109, 8439–8451) is improved by adjustment of parameters to an enlarged set of electronic energies from ab initio calculations using the coupled cluster method with single and double substitutions and a perturbative treatment of connected triple excitations (CCSD­(T)) and the method of multireference configuration interaction (MRCI). CCSD­(T) data were obtained from an extrapolation of aug-cc-pVXZ results to the basis set limit (CBS), as described in a previous work (Yurchenko, S.N.; et al. J. Chem. Phys 2005, 123, 134308); they cover the region around the NH3 equilibrium structures up to 20 000 hc cm–1. MRCI energies were computed using the aug-cc-pVQZ basis to describe both low lying singlet dissociation channels. Adjustment was performed simultaneously to energies obtained from the different ab initio methods using a merging strategy that includes 10 000 geometries at the CCSD­(T) level and 500 geometries at the MRCI level. Characteristic features of this improved representation are NH3 equilibrium geometry r eq(NH3) ≈ 101.28 pm, αeq(NH3) ≈ 107.03°, the inversion barrier at r inv(NH3) ≈ 99.88 pm and 1774 hc cm–1 above the NH3 minimum, and dissociation channel energies 41 051 hc cm–1 (for NH3 → (2B2)­NH2 + (2S1/2)­H) and 38 450 hc cm–1 (for NH3 → (3Σ–)­NH +(1Σg +)­H2); the average agreement between calculated and experimental vibrational line positions is 11 cm–1 for 14N1H3 in the spectral region up to 5000 cm–1. A survey of our current knowledge on the vibrational spectroscopy of ammonia and its isotopomers is also given.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23688044</pmid><doi>10.1021/jp4016728</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2013-08, Vol.117 (32), p.7502-7522
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1426010649
source American Chemical Society Journals
subjects Ab initio calculations
Atomic and molecular physics
Calculations and mathematical techniques in atomic and molecular physics (excluding electron correlation calculations)
Coupled cluster theory
Electronic structure of atoms, molecules and their ions: theory
Exact sciences and technology
Physics
title Global Analytical Potential Energy Surface for the Electronic Ground State of NH3 from High Level ab Initio Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Analytical%20Potential%20Energy%20Surface%20for%20the%20Electronic%20Ground%20State%20of%20NH3%20from%20High%20Level%20ab%20Initio%20Calculations&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Marquardt,%20Roberto&rft.date=2013-08-15&rft.volume=117&rft.issue=32&rft.spage=7502&rft.epage=7522&rft.pages=7502-7522&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp4016728&rft_dat=%3Cproquest_pubme%3E1426010649%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426010649&rft_id=info:pmid/23688044&rfr_iscdi=true