Synthesis of a Single G‑Quartet Platform in Water

For over 50 years the G-quartet has been a defining self-assembled structure in biology and non-covalent synthesis. It is shown here for the first time that the G-quartet is isolatable in water in the absence of stabilizing G-quartet stacking or cations through the construction of a phosphate-linked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-08, Vol.135 (32), p.11985-11989
Hauptverfasser: Bare, Grant A. L, Liu, Bo, Sherman, John C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For over 50 years the G-quartet has been a defining self-assembled structure in biology and non-covalent synthesis. It is shown here for the first time that the G-quartet is isolatable in water in the absence of stabilizing G-quartet stacking or cations through the construction of a phosphate-linked template-assembled synthetic G-quartet. Synthetic design has facilitated preservation of the guanine base, ribose sugar, and phosphate components with correct linkage chemistry relative to G-quadruplex DNA. Thus, a minimal synthetic model of G-quadruplex DNA, as in that associated with human gene promoter or telomere regions, is represented by this system. An application as a probe for interactions between G-quadruplex DNA and potential anticancer therapeutical binding ligands is demonstrated. Binding constants of 105–107 M–1 magnitude and 1:1 stoichiometries for TMPyP4, piper, and azatrux ligands were determined, whereas perturbations in BSU1051 and BRACO19 ligand signal were not observed. These data suggest a unique test for critical end-stacking interactions at the exclusion of intercalative or looping interactions for G-quadruplex binding ligands.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja405100z