Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces

The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-08, Vol.5 (15), p.7236-7243
Hauptverfasser: Bain, Lauren E, Jewett, Scott A, Mukund, Aadhithya Hosalli, Bedair, Salah M, Paskova, Tania M, Ivanisevic, Albena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7243
container_issue 15
container_start_page 7236
container_title ACS applied materials & interfaces
container_volume 5
creator Bain, Lauren E
Jewett, Scott A
Mukund, Aadhithya Hosalli
Bedair, Salah M
Paskova, Tania M
Ivanisevic, Albena
description The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.
doi_str_mv 10.1021/am4015555
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1424323111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1424323111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-414c74217a7186c82ae7c7ce91697d5c65b56e52e61c8325f918633ae0cf8d3a3</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRVdIiIRAwQ-gLWkMnn34QQcRBKQIGqityXgMi2xv2LVR4OuJIEjc5hbn6BZXiBNIzyFVcIGdScFusyemUBqTFMqqiTiM8S1NM61SeyAmShcGMqOnIl473_mWaWwxyJeAteN-iPLDoYzcOfJ9PdLg_7FLSa8YkAYO7gsH53vpG4md671EcrXEOvqw_gGDl_f9ZoGQbB5kHEODxPFI7DfYRj7e9Uw83948ze-S5ePifn61TNYKYEgMGMqNghxzKDIqFHJOOXEJWZnXljK7shlbxRlQoZVtyq2mNXJKTVFr1DNx9ru7Dv595DhUnYvEbYs9-zFWYJTRSgPAVj3dqeOq47paB9dh-Kz-jtLfIKBovg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1424323111</pqid></control><display><type>article</type><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</creator><creatorcontrib>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</creatorcontrib><description>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</description><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am4015555</identifier><identifier>PMID: 23841643</identifier><language>eng</language><publisher>United States</publisher><subject>Adsorption ; Amino Acids - chemistry ; Arginine - chemistry ; Biocompatible Materials - chemistry ; Gallium - chemistry ; Humans ; Indium - chemistry ; Microscopy, Atomic Force - methods ; Oxides - chemistry ; Photochemistry - methods ; Photoelectron Spectroscopy - methods ; Semiconductors ; Spectrophotometry, Ultraviolet - methods ; Spectroscopy, Near-Infrared - methods ; Static Electricity ; Surface Properties</subject><ispartof>ACS applied materials &amp; interfaces, 2013-08, Vol.5 (15), p.7236-7243</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23841643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bain, Lauren E</creatorcontrib><creatorcontrib>Jewett, Scott A</creatorcontrib><creatorcontrib>Mukund, Aadhithya Hosalli</creatorcontrib><creatorcontrib>Bedair, Salah M</creatorcontrib><creatorcontrib>Paskova, Tania M</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</description><subject>Adsorption</subject><subject>Amino Acids - chemistry</subject><subject>Arginine - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Gallium - chemistry</subject><subject>Humans</subject><subject>Indium - chemistry</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Oxides - chemistry</subject><subject>Photochemistry - methods</subject><subject>Photoelectron Spectroscopy - methods</subject><subject>Semiconductors</subject><subject>Spectrophotometry, Ultraviolet - methods</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Static Electricity</subject><subject>Surface Properties</subject><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkLtOw0AQRVdIiIRAwQ-gLWkMnn34QQcRBKQIGqityXgMi2xv2LVR4OuJIEjc5hbn6BZXiBNIzyFVcIGdScFusyemUBqTFMqqiTiM8S1NM61SeyAmShcGMqOnIl473_mWaWwxyJeAteN-iPLDoYzcOfJ9PdLg_7FLSa8YkAYO7gsH53vpG4md671EcrXEOvqw_gGDl_f9ZoGQbB5kHEODxPFI7DfYRj7e9Uw83948ze-S5ePifn61TNYKYEgMGMqNghxzKDIqFHJOOXEJWZnXljK7shlbxRlQoZVtyq2mNXJKTVFr1DNx9ru7Dv595DhUnYvEbYs9-zFWYJTRSgPAVj3dqeOq47paB9dh-Kz-jtLfIKBovg</recordid><startdate>20130814</startdate><enddate>20130814</enddate><creator>Bain, Lauren E</creator><creator>Jewett, Scott A</creator><creator>Mukund, Aadhithya Hosalli</creator><creator>Bedair, Salah M</creator><creator>Paskova, Tania M</creator><creator>Ivanisevic, Albena</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130814</creationdate><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><author>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-414c74217a7186c82ae7c7ce91697d5c65b56e52e61c8325f918633ae0cf8d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Amino Acids - chemistry</topic><topic>Arginine - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Gallium - chemistry</topic><topic>Humans</topic><topic>Indium - chemistry</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Oxides - chemistry</topic><topic>Photochemistry - methods</topic><topic>Photoelectron Spectroscopy - methods</topic><topic>Semiconductors</topic><topic>Spectrophotometry, Ultraviolet - methods</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Static Electricity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bain, Lauren E</creatorcontrib><creatorcontrib>Jewett, Scott A</creatorcontrib><creatorcontrib>Mukund, Aadhithya Hosalli</creatorcontrib><creatorcontrib>Bedair, Salah M</creatorcontrib><creatorcontrib>Paskova, Tania M</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bain, Lauren E</au><au>Jewett, Scott A</au><au>Mukund, Aadhithya Hosalli</au><au>Bedair, Salah M</au><au>Paskova, Tania M</au><au>Ivanisevic, Albena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2013-08-14</date><risdate>2013</risdate><volume>5</volume><issue>15</issue><spage>7236</spage><epage>7243</epage><pages>7236-7243</pages><eissn>1944-8252</eissn><abstract>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</abstract><cop>United States</cop><pmid>23841643</pmid><doi>10.1021/am4015555</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1944-8252
ispartof ACS applied materials & interfaces, 2013-08, Vol.5 (15), p.7236-7243
issn 1944-8252
language eng
recordid cdi_proquest_miscellaneous_1424323111
source ACS Publications; MEDLINE
subjects Adsorption
Amino Acids - chemistry
Arginine - chemistry
Biocompatible Materials - chemistry
Gallium - chemistry
Humans
Indium - chemistry
Microscopy, Atomic Force - methods
Oxides - chemistry
Photochemistry - methods
Photoelectron Spectroscopy - methods
Semiconductors
Spectrophotometry, Ultraviolet - methods
Spectroscopy, Near-Infrared - methods
Static Electricity
Surface Properties
title Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20gradients%20via%20semiconductor%20gradients:%20characterization%20of%20amino%20acid%20adsorption%20to%20InxGa1-xN%20surfaces&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bain,%20Lauren%20E&rft.date=2013-08-14&rft.volume=5&rft.issue=15&rft.spage=7236&rft.epage=7243&rft.pages=7236-7243&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am4015555&rft_dat=%3Cproquest_pubme%3E1424323111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1424323111&rft_id=info:pmid/23841643&rfr_iscdi=true