Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces
The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2013-08, Vol.5 (15), p.7236-7243 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7243 |
---|---|
container_issue | 15 |
container_start_page | 7236 |
container_title | ACS applied materials & interfaces |
container_volume | 5 |
creator | Bain, Lauren E Jewett, Scott A Mukund, Aadhithya Hosalli Bedair, Salah M Paskova, Tania M Ivanisevic, Albena |
description | The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes. |
doi_str_mv | 10.1021/am4015555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1424323111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1424323111</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-414c74217a7186c82ae7c7ce91697d5c65b56e52e61c8325f918633ae0cf8d3a3</originalsourceid><addsrcrecordid>eNpNkLtOw0AQRVdIiIRAwQ-gLWkMnn34QQcRBKQIGqityXgMi2xv2LVR4OuJIEjc5hbn6BZXiBNIzyFVcIGdScFusyemUBqTFMqqiTiM8S1NM61SeyAmShcGMqOnIl473_mWaWwxyJeAteN-iPLDoYzcOfJ9PdLg_7FLSa8YkAYO7gsH53vpG4md671EcrXEOvqw_gGDl_f9ZoGQbB5kHEODxPFI7DfYRj7e9Uw83948ze-S5ePifn61TNYKYEgMGMqNghxzKDIqFHJOOXEJWZnXljK7shlbxRlQoZVtyq2mNXJKTVFr1DNx9ru7Dv595DhUnYvEbYs9-zFWYJTRSgPAVj3dqeOq47paB9dh-Kz-jtLfIKBovg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1424323111</pqid></control><display><type>article</type><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</creator><creatorcontrib>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</creatorcontrib><description>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</description><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am4015555</identifier><identifier>PMID: 23841643</identifier><language>eng</language><publisher>United States</publisher><subject>Adsorption ; Amino Acids - chemistry ; Arginine - chemistry ; Biocompatible Materials - chemistry ; Gallium - chemistry ; Humans ; Indium - chemistry ; Microscopy, Atomic Force - methods ; Oxides - chemistry ; Photochemistry - methods ; Photoelectron Spectroscopy - methods ; Semiconductors ; Spectrophotometry, Ultraviolet - methods ; Spectroscopy, Near-Infrared - methods ; Static Electricity ; Surface Properties</subject><ispartof>ACS applied materials & interfaces, 2013-08, Vol.5 (15), p.7236-7243</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23841643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bain, Lauren E</creatorcontrib><creatorcontrib>Jewett, Scott A</creatorcontrib><creatorcontrib>Mukund, Aadhithya Hosalli</creatorcontrib><creatorcontrib>Bedair, Salah M</creatorcontrib><creatorcontrib>Paskova, Tania M</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</description><subject>Adsorption</subject><subject>Amino Acids - chemistry</subject><subject>Arginine - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Gallium - chemistry</subject><subject>Humans</subject><subject>Indium - chemistry</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Oxides - chemistry</subject><subject>Photochemistry - methods</subject><subject>Photoelectron Spectroscopy - methods</subject><subject>Semiconductors</subject><subject>Spectrophotometry, Ultraviolet - methods</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Static Electricity</subject><subject>Surface Properties</subject><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkLtOw0AQRVdIiIRAwQ-gLWkMnn34QQcRBKQIGqityXgMi2xv2LVR4OuJIEjc5hbn6BZXiBNIzyFVcIGdScFusyemUBqTFMqqiTiM8S1NM61SeyAmShcGMqOnIl473_mWaWwxyJeAteN-iPLDoYzcOfJ9PdLg_7FLSa8YkAYO7gsH53vpG4md671EcrXEOvqw_gGDl_f9ZoGQbB5kHEODxPFI7DfYRj7e9Uw83948ze-S5ePifn61TNYKYEgMGMqNghxzKDIqFHJOOXEJWZnXljK7shlbxRlQoZVtyq2mNXJKTVFr1DNx9ru7Dv595DhUnYvEbYs9-zFWYJTRSgPAVj3dqeOq47paB9dh-Kz-jtLfIKBovg</recordid><startdate>20130814</startdate><enddate>20130814</enddate><creator>Bain, Lauren E</creator><creator>Jewett, Scott A</creator><creator>Mukund, Aadhithya Hosalli</creator><creator>Bedair, Salah M</creator><creator>Paskova, Tania M</creator><creator>Ivanisevic, Albena</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20130814</creationdate><title>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</title><author>Bain, Lauren E ; Jewett, Scott A ; Mukund, Aadhithya Hosalli ; Bedair, Salah M ; Paskova, Tania M ; Ivanisevic, Albena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-414c74217a7186c82ae7c7ce91697d5c65b56e52e61c8325f918633ae0cf8d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Amino Acids - chemistry</topic><topic>Arginine - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Gallium - chemistry</topic><topic>Humans</topic><topic>Indium - chemistry</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Oxides - chemistry</topic><topic>Photochemistry - methods</topic><topic>Photoelectron Spectroscopy - methods</topic><topic>Semiconductors</topic><topic>Spectrophotometry, Ultraviolet - methods</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Static Electricity</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bain, Lauren E</creatorcontrib><creatorcontrib>Jewett, Scott A</creatorcontrib><creatorcontrib>Mukund, Aadhithya Hosalli</creatorcontrib><creatorcontrib>Bedair, Salah M</creatorcontrib><creatorcontrib>Paskova, Tania M</creatorcontrib><creatorcontrib>Ivanisevic, Albena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bain, Lauren E</au><au>Jewett, Scott A</au><au>Mukund, Aadhithya Hosalli</au><au>Bedair, Salah M</au><au>Paskova, Tania M</au><au>Ivanisevic, Albena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2013-08-14</date><risdate>2013</risdate><volume>5</volume><issue>15</issue><spage>7236</spage><epage>7243</epage><pages>7236-7243</pages><eissn>1944-8252</eissn><abstract>The band gap of indium gallium nitride can be tuned by varying the compositional ratio of indium to gallium, spanning the entire visible region and extending into the near-infrared and near-ultraviolet. This tunability allows for device optimization specific to different applications, including as a biosensor or platform for studying biological interactions. However, these rely on chemically dependent interactions between the device surface and the biostructures of interest. This study presents a material gradient of changing In:Ga composition and the subsequent evaluation of amino acid adsorption to this surface. Arginine is adsorbed to the surface in conditions both above and below the isoelectric point, providing insight to the role of electrostatic interactions in interface formation. These electrostatics are the driving force of the observed adsorption behaviors, with protonated amino acid demonstrating increased adsorption as a function of native surface oxide buildup. We thus present a gradient inorganic substrate featuring varying affinity for amino acid adhesion, which can be applied in generating gradient architectures for biosensors and studying cellular behaviors without application of specialized patterning processes.</abstract><cop>United States</cop><pmid>23841643</pmid><doi>10.1021/am4015555</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1944-8252 |
ispartof | ACS applied materials & interfaces, 2013-08, Vol.5 (15), p.7236-7243 |
issn | 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1424323111 |
source | ACS Publications; MEDLINE |
subjects | Adsorption Amino Acids - chemistry Arginine - chemistry Biocompatible Materials - chemistry Gallium - chemistry Humans Indium - chemistry Microscopy, Atomic Force - methods Oxides - chemistry Photochemistry - methods Photoelectron Spectroscopy - methods Semiconductors Spectrophotometry, Ultraviolet - methods Spectroscopy, Near-Infrared - methods Static Electricity Surface Properties |
title | Biomolecular gradients via semiconductor gradients: characterization of amino acid adsorption to InxGa1-xN surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomolecular%20gradients%20via%20semiconductor%20gradients:%20characterization%20of%20amino%20acid%20adsorption%20to%20InxGa1-xN%20surfaces&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Bain,%20Lauren%20E&rft.date=2013-08-14&rft.volume=5&rft.issue=15&rft.spage=7236&rft.epage=7243&rft.pages=7236-7243&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am4015555&rft_dat=%3Cproquest_pubme%3E1424323111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1424323111&rft_id=info:pmid/23841643&rfr_iscdi=true |