Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders

Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-08, Vol.5 (15), p.7299-7307
Hauptverfasser: Erk, Christoph, Brezesinski, Torsten, Sommer, Heino, Schneider, Reinhard, Janek, Jürgen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7307
container_issue 15
container_start_page 7299
container_title ACS applied materials & interfaces
container_volume 5
creator Erk, Christoph
Brezesinski, Torsten
Sommer, Heino
Schneider, Reinhard
Janek, Jürgen
description Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a “standard” is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system – even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.
doi_str_mv 10.1021/am401642c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1424322807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1424322807</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-ebd71e46075813e242bdd8541011528bac72fbf0d34e8e1c3950c225ea0ce21d3</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EYikceAHkCxIcArZjtym3tmKTqlKphWvk2BNhlNjFdoA-By9MqpZy4TSjmW_-2RA6peSKEkavZc0J7XKmdtAh7XOeZEyw3a3P-QE6CuGNkG7KiNhHByztEyEoP0Tfc_cpvcYzUxnlLB5YpyHg0nk8ga-Y3IMFL6NpU2MTX01T48fWH8oYwRsIN3iAR65eyBX0AXgKvq2tpVWAZ7HRS-xK_CK9cU3AU1cta_B4aKwGH7C0f40n0rqF-1zFj9FeKasAJxvbQc93t_PRQzJ-un8cDcaJTDMaEyh0jwLvkp7IaAqMs0LrTHBKKBUsK6TqsbIoiU45ZEBV2hdEMSZAEgWM6rSDLta6C-_eGwgxr01QUFXSQjtuTjnjKWMZ6bXo5RpV3oXgocwX3tTSL3NK8tUP8u0PWvZsI9sUNegt-Xv0FjhfA1KF_M013rZb_iP0A-A7jvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1424322807</pqid></control><display><type>article</type><title>Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders</title><source>ACS Publications</source><creator>Erk, Christoph ; Brezesinski, Torsten ; Sommer, Heino ; Schneider, Reinhard ; Janek, Jürgen</creator><creatorcontrib>Erk, Christoph ; Brezesinski, Torsten ; Sommer, Heino ; Schneider, Reinhard ; Janek, Jürgen</creatorcontrib><description>Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a “standard” is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system – even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am401642c</identifier><identifier>PMID: 23905514</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2013-08, Vol.5 (15), p.7299-7307</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-ebd71e46075813e242bdd8541011528bac72fbf0d34e8e1c3950c225ea0ce21d3</citedby><cites>FETCH-LOGICAL-a381t-ebd71e46075813e242bdd8541011528bac72fbf0d34e8e1c3950c225ea0ce21d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am401642c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am401642c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23905514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erk, Christoph</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Sommer, Heino</creatorcontrib><creatorcontrib>Schneider, Reinhard</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a “standard” is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system – even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkclOwzAQhi0EYikceAHkCxIcArZjtym3tmKTqlKphWvk2BNhlNjFdoA-By9MqpZy4TSjmW_-2RA6peSKEkavZc0J7XKmdtAh7XOeZEyw3a3P-QE6CuGNkG7KiNhHByztEyEoP0Tfc_cpvcYzUxnlLB5YpyHg0nk8ga-Y3IMFL6NpU2MTX01T48fWH8oYwRsIN3iAR65eyBX0AXgKvq2tpVWAZ7HRS-xK_CK9cU3AU1cta_B4aKwGH7C0f40n0rqF-1zFj9FeKasAJxvbQc93t_PRQzJ-un8cDcaJTDMaEyh0jwLvkp7IaAqMs0LrTHBKKBUsK6TqsbIoiU45ZEBV2hdEMSZAEgWM6rSDLta6C-_eGwgxr01QUFXSQjtuTjnjKWMZ6bXo5RpV3oXgocwX3tTSL3NK8tUP8u0PWvZsI9sUNegt-Xv0FjhfA1KF_M013rZb_iP0A-A7jvg</recordid><startdate>20130814</startdate><enddate>20130814</enddate><creator>Erk, Christoph</creator><creator>Brezesinski, Torsten</creator><creator>Sommer, Heino</creator><creator>Schneider, Reinhard</creator><creator>Janek, Jürgen</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130814</creationdate><title>Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders</title><author>Erk, Christoph ; Brezesinski, Torsten ; Sommer, Heino ; Schneider, Reinhard ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-ebd71e46075813e242bdd8541011528bac72fbf0d34e8e1c3950c225ea0ce21d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erk, Christoph</creatorcontrib><creatorcontrib>Brezesinski, Torsten</creatorcontrib><creatorcontrib>Sommer, Heino</creatorcontrib><creatorcontrib>Schneider, Reinhard</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erk, Christoph</au><au>Brezesinski, Torsten</au><au>Sommer, Heino</au><au>Schneider, Reinhard</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-08-14</date><risdate>2013</risdate><volume>5</volume><issue>15</issue><spage>7299</spage><epage>7307</epage><pages>7299-7307</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Silicon is widely regarded as one of the most promising anode materials for lithium ion and next-generation lithium batteries because of its high theoretical specific capacity. However, major issues arise from the large volume changes during alloying with lithium. In recent years, much effort has been spent on preparing nanostructured silicon and optimizing various aspects of material processing with the goal of preserving the electrode integrity upon lithiation/delithiation. The performance of silicon anodes is known to depend on a large number of parameters and, thus, the general definition of a “standard” is virtually impossible. In this work, we conduct a comparative performance study of silicon anode tapes prepared from commercially available materials while using both a well-defined electrode configuration and cycling method. Our results demonstrate that the polymer binder has a profound effect on the cell performance. Furthermore, we show that key parameters such as specific capacity, capacity retention, rate capability, and so forth can be strongly affected by the choice of silicon material, polymer binder and electrolyte system – even the formation of metastable crystalline Li15Si4 is found to depend on the electrode composition and low potential exposure time. Overall, the use of either poly(acrylic acid) with a viscosity-average molecular weight of 450.000 or poly(vinyl alcohol) Selvol 425 in combination with both silicon nanopowder containing a native oxide surface layer of ∼1 nm in diameter and with a monofluoroethylene carbonate-based electrolyte led to improved cycling stability at high loadings.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23905514</pmid><doi>10.1021/am401642c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2013-08, Vol.5 (15), p.7299-7307
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1424322807
source ACS Publications
title Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Silicon%20Anodes%20for%20Next-Generation%20Lithium%20Ion%20Batteries:%20A%20Comparative%20Performance%20Study%20of%20Various%20Polymer%20Binders%20and%20Silicon%20Nanopowders&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Erk,%20Christoph&rft.date=2013-08-14&rft.volume=5&rft.issue=15&rft.spage=7299&rft.epage=7307&rft.pages=7299-7307&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am401642c&rft_dat=%3Cproquest_cross%3E1424322807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1424322807&rft_id=info:pmid/23905514&rfr_iscdi=true