Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media
Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation–reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (E L, E U), the number (n) of OFRCs, and...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-08, Vol.29 (32), p.10272-10278 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10278 |
---|---|
container_issue | 32 |
container_start_page | 10272 |
container_title | Langmuir |
container_volume | 29 |
creator | Köntje, Carsten Kolb, Dieter M Jerkiewicz, Gregory |
description | Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation–reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (E L, E U), the number (n) of OFRCs, and the potential scan rate (s). Surface patterning of Au(111) initially (n = 1–2) generates small islands and holes that are one atomic step in height. As n increases to 5, the number of islands decreases and the holes become larger; after n = 10 OFRCs, the islands become inexistent and large, randomly distributed holes are observed. Increase of OFRCs to n = 20 generates surface structures that reside within three atomic layers and resemble phase separation through a spinodal decomposition mechanism. As the number of OFRCs rises to n = 50, a network of interconnected islands and holes emerges; the islands and holes are two-three atomic steps in height, and are located within topmost five monolayers. Further increase of the number of OFRCs to n = 100 creates a network of interconnected trigonal pyramids that are pointed in the same direction. The size of the pyramids depends on the electrolyte composition and the number of OFRCs. In the case of n = 100, the pyramids are 12–25 nm in base length and 0.4–1.6 nm in height in 0.1 M aqueous H2SO4, and 20–50 nm in base length and 0.8–1.6 nm in height in 0.1 M aqueous HNO3. The number of OFRCs and scan rate play an important role in patterning of Au(111), and complete nanopattern development requires a large number of OFRCs and low scan rates. |
doi_str_mv | 10.1021/la4018757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1420606824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1420606824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-b7b5d08313326c37a38a9ff267779a01cef3dabcd950ac2ed0a8cf1b49812eca3</originalsourceid><addsrcrecordid>eNpt0DlPwzAUB3ALgaAcA18AeUEqQ8Bn7IxVxSWVQxXM0YvjFKPULnYy8O1JaYGF6Q3v9w79ETql5JISRq9aEIRqJdUOGlHJSCY1U7toRJTgmRI5P0CHKb0TQgouin10wLiWUhfFCNl56Bdv1ju_wOBrPAt-kc3BLyx-BB9W0HU2fndDgyf9mFJ6gbu3uJ7Cz6GzvnPQ4umnadfIeTz56G3oE54YVzuDH2zt4BjtNdAme7KtR-j15vplepfNnm7vp5NZBlzILqtUJWuiOeWc5YYr4BqKpmG5UqoAQo1teA2VqQtJwDBbE9CmoZUoNGXWAD9C483eVQzDG6krly4Z27bg1z-VVDCSk1wzMdCLDTUxpBRtU66iW0L8LCkp16mWv6kO9my7tq-Wtv6VPzEO4HwLIBlomwjeuPTnVC6loOLPgUnle-ijH9L45-AXgHCJ6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1420606824</pqid></control><display><type>article</type><title>Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media</title><source>ACS Publications</source><source>MEDLINE</source><creator>Köntje, Carsten ; Kolb, Dieter M ; Jerkiewicz, Gregory</creator><creatorcontrib>Köntje, Carsten ; Kolb, Dieter M ; Jerkiewicz, Gregory</creatorcontrib><description>Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation–reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (E L, E U), the number (n) of OFRCs, and the potential scan rate (s). Surface patterning of Au(111) initially (n = 1–2) generates small islands and holes that are one atomic step in height. As n increases to 5, the number of islands decreases and the holes become larger; after n = 10 OFRCs, the islands become inexistent and large, randomly distributed holes are observed. Increase of OFRCs to n = 20 generates surface structures that reside within three atomic layers and resemble phase separation through a spinodal decomposition mechanism. As the number of OFRCs rises to n = 50, a network of interconnected islands and holes emerges; the islands and holes are two-three atomic steps in height, and are located within topmost five monolayers. Further increase of the number of OFRCs to n = 100 creates a network of interconnected trigonal pyramids that are pointed in the same direction. The size of the pyramids depends on the electrolyte composition and the number of OFRCs. In the case of n = 100, the pyramids are 12–25 nm in base length and 0.4–1.6 nm in height in 0.1 M aqueous H2SO4, and 20–50 nm in base length and 0.8–1.6 nm in height in 0.1 M aqueous HNO3. The number of OFRCs and scan rate play an important role in patterning of Au(111), and complete nanopattern development requires a large number of OFRCs and low scan rates.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la4018757</identifier><identifier>PMID: 23855899</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Electrochemical Techniques ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Gold - chemistry ; Nanoparticles - chemistry ; Study of interfaces ; Sulfuric Acids - chemistry ; Surface Properties ; Water - chemistry</subject><ispartof>Langmuir, 2013-08, Vol.29 (32), p.10272-10278</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-b7b5d08313326c37a38a9ff267779a01cef3dabcd950ac2ed0a8cf1b49812eca3</citedby><cites>FETCH-LOGICAL-a345t-b7b5d08313326c37a38a9ff267779a01cef3dabcd950ac2ed0a8cf1b49812eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la4018757$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la4018757$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27655414$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23855899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Köntje, Carsten</creatorcontrib><creatorcontrib>Kolb, Dieter M</creatorcontrib><creatorcontrib>Jerkiewicz, Gregory</creatorcontrib><title>Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation–reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (E L, E U), the number (n) of OFRCs, and the potential scan rate (s). Surface patterning of Au(111) initially (n = 1–2) generates small islands and holes that are one atomic step in height. As n increases to 5, the number of islands decreases and the holes become larger; after n = 10 OFRCs, the islands become inexistent and large, randomly distributed holes are observed. Increase of OFRCs to n = 20 generates surface structures that reside within three atomic layers and resemble phase separation through a spinodal decomposition mechanism. As the number of OFRCs rises to n = 50, a network of interconnected islands and holes emerges; the islands and holes are two-three atomic steps in height, and are located within topmost five monolayers. Further increase of the number of OFRCs to n = 100 creates a network of interconnected trigonal pyramids that are pointed in the same direction. The size of the pyramids depends on the electrolyte composition and the number of OFRCs. In the case of n = 100, the pyramids are 12–25 nm in base length and 0.4–1.6 nm in height in 0.1 M aqueous H2SO4, and 20–50 nm in base length and 0.8–1.6 nm in height in 0.1 M aqueous HNO3. The number of OFRCs and scan rate play an important role in patterning of Au(111), and complete nanopattern development requires a large number of OFRCs and low scan rates.</description><subject>Chemistry</subject><subject>Electrochemical Techniques</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Gold - chemistry</subject><subject>Nanoparticles - chemistry</subject><subject>Study of interfaces</subject><subject>Sulfuric Acids - chemistry</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0DlPwzAUB3ALgaAcA18AeUEqQ8Bn7IxVxSWVQxXM0YvjFKPULnYy8O1JaYGF6Q3v9w79ETql5JISRq9aEIRqJdUOGlHJSCY1U7toRJTgmRI5P0CHKb0TQgouin10wLiWUhfFCNl56Bdv1ju_wOBrPAt-kc3BLyx-BB9W0HU2fndDgyf9mFJ6gbu3uJ7Cz6GzvnPQ4umnadfIeTz56G3oE54YVzuDH2zt4BjtNdAme7KtR-j15vplepfNnm7vp5NZBlzILqtUJWuiOeWc5YYr4BqKpmG5UqoAQo1teA2VqQtJwDBbE9CmoZUoNGXWAD9C483eVQzDG6krly4Z27bg1z-VVDCSk1wzMdCLDTUxpBRtU66iW0L8LCkp16mWv6kO9my7tq-Wtv6VPzEO4HwLIBlomwjeuPTnVC6loOLPgUnle-ijH9L45-AXgHCJ6Q</recordid><startdate>20130813</startdate><enddate>20130813</enddate><creator>Köntje, Carsten</creator><creator>Kolb, Dieter M</creator><creator>Jerkiewicz, Gregory</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130813</creationdate><title>Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media</title><author>Köntje, Carsten ; Kolb, Dieter M ; Jerkiewicz, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-b7b5d08313326c37a38a9ff267779a01cef3dabcd950ac2ed0a8cf1b49812eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Electrochemical Techniques</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Gold - chemistry</topic><topic>Nanoparticles - chemistry</topic><topic>Study of interfaces</topic><topic>Sulfuric Acids - chemistry</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Köntje, Carsten</creatorcontrib><creatorcontrib>Kolb, Dieter M</creatorcontrib><creatorcontrib>Jerkiewicz, Gregory</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Köntje, Carsten</au><au>Kolb, Dieter M</au><au>Jerkiewicz, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-08-13</date><risdate>2013</risdate><volume>29</volume><issue>32</issue><spage>10272</spage><epage>10278</epage><pages>10272-10278</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Electrochemical treatment of Au(111) in aqueous H2SO4 solution by repetitive application of oxide formation–reduction cycles (OFRC) generates nanopatterned surfaces with long-range order. The pattern development depends on the lower and upper potential limits (E L, E U), the number (n) of OFRCs, and the potential scan rate (s). Surface patterning of Au(111) initially (n = 1–2) generates small islands and holes that are one atomic step in height. As n increases to 5, the number of islands decreases and the holes become larger; after n = 10 OFRCs, the islands become inexistent and large, randomly distributed holes are observed. Increase of OFRCs to n = 20 generates surface structures that reside within three atomic layers and resemble phase separation through a spinodal decomposition mechanism. As the number of OFRCs rises to n = 50, a network of interconnected islands and holes emerges; the islands and holes are two-three atomic steps in height, and are located within topmost five monolayers. Further increase of the number of OFRCs to n = 100 creates a network of interconnected trigonal pyramids that are pointed in the same direction. The size of the pyramids depends on the electrolyte composition and the number of OFRCs. In the case of n = 100, the pyramids are 12–25 nm in base length and 0.4–1.6 nm in height in 0.1 M aqueous H2SO4, and 20–50 nm in base length and 0.8–1.6 nm in height in 0.1 M aqueous HNO3. The number of OFRCs and scan rate play an important role in patterning of Au(111), and complete nanopattern development requires a large number of OFRCs and low scan rates.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23855899</pmid><doi>10.1021/la4018757</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-08, Vol.29 (32), p.10272-10278 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1420606824 |
source | ACS Publications; MEDLINE |
subjects | Chemistry Electrochemical Techniques Electrochemistry Exact sciences and technology General and physical chemistry Gold - chemistry Nanoparticles - chemistry Study of interfaces Sulfuric Acids - chemistry Surface Properties Water - chemistry |
title | Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roughening%20and%20Long-Range%20Nanopatterning%20of%20Au(111)%20through%20Potential%20Cycling%20in%20Aqueous%20Acidic%20Media&rft.jtitle=Langmuir&rft.au=Ko%CC%88ntje,%20Carsten&rft.date=2013-08-13&rft.volume=29&rft.issue=32&rft.spage=10272&rft.epage=10278&rft.pages=10272-10278&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la4018757&rft_dat=%3Cproquest_cross%3E1420606824%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1420606824&rft_id=info:pmid/23855899&rfr_iscdi=true |