Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2013-08, Vol.126 (8), p.1965-1976 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1976 |
---|---|
container_issue | 8 |
container_start_page | 1965 |
container_title | Theoretical and applied genetics |
container_volume | 126 |
creator | Kamran, A Iqbal, M Navabi, A Randhawa, H Pozniak, C Spaner, D |
description | Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat. |
doi_str_mv | 10.1007/s00122-013-2110-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419373795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419373795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS1ERYfCA7ABS2zYpFz_Zrxsh_IjjVQQ7dpykpuOq0wc7ISKl2DLA_FiOKRUiEXFyrL93XN97jEhzxgcM4DydQJgnBfARMEZgwIekBWTghecS_6QrAAkFKpU_JA8TukaALgC8YgccqGl0QpW5PuZi53vMSU6YKQJ6aeLbaKub-i4Qx-p70eMrh596OmNH3fzMR12YQyZ96HJQMI--dF_Req6DjukH4emeMNcvvpNb6axy9o_f9CTDT11MXqkaYi-v6I3O3QjHcIwdW5u8YQctK5L-PR2PSKXb88uNu-L7fm7D5uTbVELvYaiEmXpUCtmZFNpVmpZG4lVzRuX7Yq8g6aSa6igNU6YWiGYSjGoWu5ap7g4Iq8W3SGGLxOm0e59qrHrXI9hSpZJZkQpSqP-BxVMa61MRl_-g16HKfbZyExxqVR-cqbYQtUxpBSxtXkWexe_WQZ2ztUuudqcq51ztZBrnt8qT9Uem7uKP0FmgC_AMliMf7W-R_XFUtS6YN1V9MlefubAZP4pQhmzvpdgZZk9_wLyhr91</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412455651</pqid></control><display><type>article</type><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</creator><creatorcontrib>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</creatorcontrib><description>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-013-2110-0</identifier><identifier>PMID: 23649650</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agricultural production ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Bread ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant ; Cultivars ; DNA, Plant - analysis ; DNA, Plant - genetics ; early development ; Edible Grain - genetics ; Edible Grain - physiology ; filling period ; flowering ; Flowers - genetics ; Flowers - growth & development ; Flowers - physiology ; Genes ; Genetic Markers - genetics ; Genotype ; grain yield ; inbred lines ; Life Sciences ; Light Signal Transduction - genetics ; marker-assisted selection ; microsatellite repeats ; Original Paper ; Photoperiod ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plants, Genetically Modified ; quantitative trait loci ; Quantitative Trait Loci - genetics ; spring wheat ; Triticum - genetics ; Triticum - growth & development ; Triticum - physiology ; Triticum aestivum</subject><ispartof>Theoretical and applied genetics, 2013-08, Vol.126 (8), p.1965-1976</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</citedby><cites>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-013-2110-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-013-2110-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23649650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamran, A</creatorcontrib><creatorcontrib>Iqbal, M</creatorcontrib><creatorcontrib>Navabi, A</creatorcontrib><creatorcontrib>Randhawa, H</creatorcontrib><creatorcontrib>Pozniak, C</creatorcontrib><creatorcontrib>Spaner, D</creatorcontrib><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Cultivars</subject><subject>DNA, Plant - analysis</subject><subject>DNA, Plant - genetics</subject><subject>early development</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - physiology</subject><subject>filling period</subject><subject>flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - growth & development</subject><subject>Flowers - physiology</subject><subject>Genes</subject><subject>Genetic Markers - genetics</subject><subject>Genotype</subject><subject>grain yield</subject><subject>inbred lines</subject><subject>Life Sciences</subject><subject>Light Signal Transduction - genetics</subject><subject>marker-assisted selection</subject><subject>microsatellite repeats</subject><subject>Original Paper</subject><subject>Photoperiod</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plants, Genetically Modified</subject><subject>quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>spring wheat</subject><subject>Triticum - genetics</subject><subject>Triticum - growth & development</subject><subject>Triticum - physiology</subject><subject>Triticum aestivum</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1DAUhS1ERYfCA7ABS2zYpFz_Zrxsh_IjjVQQ7dpykpuOq0wc7ISKl2DLA_FiOKRUiEXFyrL93XN97jEhzxgcM4DydQJgnBfARMEZgwIekBWTghecS_6QrAAkFKpU_JA8TukaALgC8YgccqGl0QpW5PuZi53vMSU6YKQJ6aeLbaKub-i4Qx-p70eMrh596OmNH3fzMR12YQyZ96HJQMI--dF_Req6DjukH4emeMNcvvpNb6axy9o_f9CTDT11MXqkaYi-v6I3O3QjHcIwdW5u8YQctK5L-PR2PSKXb88uNu-L7fm7D5uTbVELvYaiEmXpUCtmZFNpVmpZG4lVzRuX7Yq8g6aSa6igNU6YWiGYSjGoWu5ap7g4Iq8W3SGGLxOm0e59qrHrXI9hSpZJZkQpSqP-BxVMa61MRl_-g16HKfbZyExxqVR-cqbYQtUxpBSxtXkWexe_WQZ2ztUuudqcq51ztZBrnt8qT9Uem7uKP0FmgC_AMliMf7W-R_XFUtS6YN1V9MlefubAZP4pQhmzvpdgZZk9_wLyhr91</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Kamran, A</creator><creator>Iqbal, M</creator><creator>Navabi, A</creator><creator>Randhawa, H</creator><creator>Pozniak, C</creator><creator>Spaner, D</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><author>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Cultivars</topic><topic>DNA, Plant - analysis</topic><topic>DNA, Plant - genetics</topic><topic>early development</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - physiology</topic><topic>filling period</topic><topic>flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - growth & development</topic><topic>Flowers - physiology</topic><topic>Genes</topic><topic>Genetic Markers - genetics</topic><topic>Genotype</topic><topic>grain yield</topic><topic>inbred lines</topic><topic>Life Sciences</topic><topic>Light Signal Transduction - genetics</topic><topic>marker-assisted selection</topic><topic>microsatellite repeats</topic><topic>Original Paper</topic><topic>Photoperiod</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plants, Genetically Modified</topic><topic>quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>spring wheat</topic><topic>Triticum - genetics</topic><topic>Triticum - growth & development</topic><topic>Triticum - physiology</topic><topic>Triticum aestivum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamran, A</creatorcontrib><creatorcontrib>Iqbal, M</creatorcontrib><creatorcontrib>Navabi, A</creatorcontrib><creatorcontrib>Randhawa, H</creatorcontrib><creatorcontrib>Pozniak, C</creatorcontrib><creatorcontrib>Spaner, D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamran, A</au><au>Iqbal, M</au><au>Navabi, A</au><au>Randhawa, H</au><au>Pozniak, C</au><au>Spaner, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2013-08</date><risdate>2013</risdate><volume>126</volume><issue>8</issue><spage>1965</spage><epage>1976</epage><pages>1965-1976</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23649650</pmid><doi>10.1007/s00122-013-2110-0</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2013-08, Vol.126 (8), p.1965-1976 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_1419373795 |
source | MEDLINE; SpringerNature Journals |
subjects | Agricultural production Agriculture Biochemistry Biomedical and Life Sciences Biotechnology Bread Chromosome Mapping Chromosomes Chromosomes, Plant Cultivars DNA, Plant - analysis DNA, Plant - genetics early development Edible Grain - genetics Edible Grain - physiology filling period flowering Flowers - genetics Flowers - growth & development Flowers - physiology Genes Genetic Markers - genetics Genotype grain yield inbred lines Life Sciences Light Signal Transduction - genetics marker-assisted selection microsatellite repeats Original Paper Photoperiod Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Plants, Genetically Modified quantitative trait loci Quantitative Trait Loci - genetics spring wheat Triticum - genetics Triticum - growth & development Triticum - physiology Triticum aestivum |
title | Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T11%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earliness%20per%20se%20QTLs%20and%20their%20interaction%20with%20the%20photoperiod%20insensitive%20allele%20Ppd-D1a%20in%20the%20Cutler%20%C3%97%20AC%20Barrie%20spring%20wheat%20population&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Kamran,%20A&rft.date=2013-08&rft.volume=126&rft.issue=8&rft.spage=1965&rft.epage=1976&rft.pages=1965-1976&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-013-2110-0&rft_dat=%3Cproquest_cross%3E1419373795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412455651&rft_id=info:pmid/23649650&rfr_iscdi=true |