Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population

Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2013-08, Vol.126 (8), p.1965-1976
Hauptverfasser: Kamran, A, Iqbal, M, Navabi, A, Randhawa, H, Pozniak, C, Spaner, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1976
container_issue 8
container_start_page 1965
container_title Theoretical and applied genetics
container_volume 126
creator Kamran, A
Iqbal, M
Navabi, A
Randhawa, H
Pozniak, C
Spaner, D
description Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.
doi_str_mv 10.1007/s00122-013-2110-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419373795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419373795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</originalsourceid><addsrcrecordid>eNqNks1u1DAUhS1ERYfCA7ABS2zYpFz_Zrxsh_IjjVQQ7dpykpuOq0wc7ISKl2DLA_FiOKRUiEXFyrL93XN97jEhzxgcM4DydQJgnBfARMEZgwIekBWTghecS_6QrAAkFKpU_JA8TukaALgC8YgccqGl0QpW5PuZi53vMSU6YKQJ6aeLbaKub-i4Qx-p70eMrh596OmNH3fzMR12YQyZ96HJQMI--dF_Req6DjukH4emeMNcvvpNb6axy9o_f9CTDT11MXqkaYi-v6I3O3QjHcIwdW5u8YQctK5L-PR2PSKXb88uNu-L7fm7D5uTbVELvYaiEmXpUCtmZFNpVmpZG4lVzRuX7Yq8g6aSa6igNU6YWiGYSjGoWu5ap7g4Iq8W3SGGLxOm0e59qrHrXI9hSpZJZkQpSqP-BxVMa61MRl_-g16HKfbZyExxqVR-cqbYQtUxpBSxtXkWexe_WQZ2ztUuudqcq51ztZBrnt8qT9Uem7uKP0FmgC_AMliMf7W-R_XFUtS6YN1V9MlefubAZP4pQhmzvpdgZZk9_wLyhr91</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412455651</pqid></control><display><type>article</type><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</creator><creatorcontrib>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</creatorcontrib><description>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-013-2110-0</identifier><identifier>PMID: 23649650</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agricultural production ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Bread ; Chromosome Mapping ; Chromosomes ; Chromosomes, Plant ; Cultivars ; DNA, Plant - analysis ; DNA, Plant - genetics ; early development ; Edible Grain - genetics ; Edible Grain - physiology ; filling period ; flowering ; Flowers - genetics ; Flowers - growth &amp; development ; Flowers - physiology ; Genes ; Genetic Markers - genetics ; Genotype ; grain yield ; inbred lines ; Life Sciences ; Light Signal Transduction - genetics ; marker-assisted selection ; microsatellite repeats ; Original Paper ; Photoperiod ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plants, Genetically Modified ; quantitative trait loci ; Quantitative Trait Loci - genetics ; spring wheat ; Triticum - genetics ; Triticum - growth &amp; development ; Triticum - physiology ; Triticum aestivum</subject><ispartof>Theoretical and applied genetics, 2013-08, Vol.126 (8), p.1965-1976</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</citedby><cites>FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-013-2110-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-013-2110-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23649650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamran, A</creatorcontrib><creatorcontrib>Iqbal, M</creatorcontrib><creatorcontrib>Navabi, A</creatorcontrib><creatorcontrib>Randhawa, H</creatorcontrib><creatorcontrib>Pozniak, C</creatorcontrib><creatorcontrib>Spaner, D</creatorcontrib><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Bread</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>Cultivars</subject><subject>DNA, Plant - analysis</subject><subject>DNA, Plant - genetics</subject><subject>early development</subject><subject>Edible Grain - genetics</subject><subject>Edible Grain - physiology</subject><subject>filling period</subject><subject>flowering</subject><subject>Flowers - genetics</subject><subject>Flowers - growth &amp; development</subject><subject>Flowers - physiology</subject><subject>Genes</subject><subject>Genetic Markers - genetics</subject><subject>Genotype</subject><subject>grain yield</subject><subject>inbred lines</subject><subject>Life Sciences</subject><subject>Light Signal Transduction - genetics</subject><subject>marker-assisted selection</subject><subject>microsatellite repeats</subject><subject>Original Paper</subject><subject>Photoperiod</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plants, Genetically Modified</subject><subject>quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>spring wheat</subject><subject>Triticum - genetics</subject><subject>Triticum - growth &amp; development</subject><subject>Triticum - physiology</subject><subject>Triticum aestivum</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNks1u1DAUhS1ERYfCA7ABS2zYpFz_Zrxsh_IjjVQQ7dpykpuOq0wc7ISKl2DLA_FiOKRUiEXFyrL93XN97jEhzxgcM4DydQJgnBfARMEZgwIekBWTghecS_6QrAAkFKpU_JA8TukaALgC8YgccqGl0QpW5PuZi53vMSU6YKQJ6aeLbaKub-i4Qx-p70eMrh596OmNH3fzMR12YQyZ96HJQMI--dF_Req6DjukH4emeMNcvvpNb6axy9o_f9CTDT11MXqkaYi-v6I3O3QjHcIwdW5u8YQctK5L-PR2PSKXb88uNu-L7fm7D5uTbVELvYaiEmXpUCtmZFNpVmpZG4lVzRuX7Yq8g6aSa6igNU6YWiGYSjGoWu5ap7g4Iq8W3SGGLxOm0e59qrHrXI9hSpZJZkQpSqP-BxVMa61MRl_-g16HKfbZyExxqVR-cqbYQtUxpBSxtXkWexe_WQZ2ztUuudqcq51ztZBrnt8qT9Uem7uKP0FmgC_AMliMf7W-R_XFUtS6YN1V9MlefubAZP4pQhmzvpdgZZk9_wLyhr91</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Kamran, A</creator><creator>Iqbal, M</creator><creator>Navabi, A</creator><creator>Randhawa, H</creator><creator>Pozniak, C</creator><creator>Spaner, D</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201308</creationdate><title>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</title><author>Kamran, A ; Iqbal, M ; Navabi, A ; Randhawa, H ; Pozniak, C ; Spaner, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-b377ae65194db61764c94ebc2da57534c90db480b0f9a39c5e09b510bf2afa523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Bread</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>Cultivars</topic><topic>DNA, Plant - analysis</topic><topic>DNA, Plant - genetics</topic><topic>early development</topic><topic>Edible Grain - genetics</topic><topic>Edible Grain - physiology</topic><topic>filling period</topic><topic>flowering</topic><topic>Flowers - genetics</topic><topic>Flowers - growth &amp; development</topic><topic>Flowers - physiology</topic><topic>Genes</topic><topic>Genetic Markers - genetics</topic><topic>Genotype</topic><topic>grain yield</topic><topic>inbred lines</topic><topic>Life Sciences</topic><topic>Light Signal Transduction - genetics</topic><topic>marker-assisted selection</topic><topic>microsatellite repeats</topic><topic>Original Paper</topic><topic>Photoperiod</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plants, Genetically Modified</topic><topic>quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>spring wheat</topic><topic>Triticum - genetics</topic><topic>Triticum - growth &amp; development</topic><topic>Triticum - physiology</topic><topic>Triticum aestivum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamran, A</creatorcontrib><creatorcontrib>Iqbal, M</creatorcontrib><creatorcontrib>Navabi, A</creatorcontrib><creatorcontrib>Randhawa, H</creatorcontrib><creatorcontrib>Pozniak, C</creatorcontrib><creatorcontrib>Spaner, D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamran, A</au><au>Iqbal, M</au><au>Navabi, A</au><au>Randhawa, H</au><au>Pozniak, C</au><au>Spaner, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2013-08</date><risdate>2013</risdate><volume>126</volume><issue>8</issue><spage>1965</spage><epage>1976</epage><pages>1965-1976</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23649650</pmid><doi>10.1007/s00122-013-2110-0</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2013-08, Vol.126 (8), p.1965-1976
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1419373795
source MEDLINE; SpringerNature Journals
subjects Agricultural production
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
Bread
Chromosome Mapping
Chromosomes
Chromosomes, Plant
Cultivars
DNA, Plant - analysis
DNA, Plant - genetics
early development
Edible Grain - genetics
Edible Grain - physiology
filling period
flowering
Flowers - genetics
Flowers - growth & development
Flowers - physiology
Genes
Genetic Markers - genetics
Genotype
grain yield
inbred lines
Life Sciences
Light Signal Transduction - genetics
marker-assisted selection
microsatellite repeats
Original Paper
Photoperiod
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plants, Genetically Modified
quantitative trait loci
Quantitative Trait Loci - genetics
spring wheat
Triticum - genetics
Triticum - growth & development
Triticum - physiology
Triticum aestivum
title Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T11%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Earliness%20per%20se%20QTLs%20and%20their%20interaction%20with%20the%20photoperiod%20insensitive%20allele%20Ppd-D1a%20in%20the%20Cutler%20%C3%97%20AC%20Barrie%20spring%20wheat%20population&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Kamran,%20A&rft.date=2013-08&rft.volume=126&rft.issue=8&rft.spage=1965&rft.epage=1976&rft.pages=1965-1976&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-013-2110-0&rft_dat=%3Cproquest_cross%3E1419373795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412455651&rft_id=info:pmid/23649650&rfr_iscdi=true