Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin

Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493
Hauptverfasser: Dubins, Jeffrey S, Sanchez-Alavez, Manuel, Zhukov, Victor, Sanchez-Gonzalez, Alejandro, Moroncini, Gianluca, Carvajal-Gonzalez, Santos, Hadcock, John R, Bartfai, Tamas, Conti, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 10
container_start_page 1486
container_title Metabolism, clinical and experimental
container_volume 61
creator Dubins, Jeffrey S
Sanchez-Alavez, Manuel
Zhukov, Victor
Sanchez-Gonzalez, Alejandro
Moroncini, Gianluca
Carvajal-Gonzalez, Santos
Hadcock, John R
Bartfai, Tamas
Conti, Bruno
description Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P < .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.
doi_str_mv 10.1016/j.metabol.2012.03.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419367169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026049512001175</els_id><sourcerecordid>1419367169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</originalsourceid><addsrcrecordid>eNqFks-O0zAQxiMEYsvCI4B8QeLSMrbjOLmA0AIL0kog_pytiT3duiRxsJNFfQGeG4cWkLjswbL16TfzWfNNUTzmsOHAq-f7TU8TtqHbCOBiA3IDXN0pVlxJsa4rgLvFCkBUaygbdVY8SGkPAFrX1f3iTAiVCaVWxc_X4ccQ6XrucPJhYGHLLj9-qiXzA5t2xHaHMUw77LD3lo2RwjjlB0ZCFsnNlhKzIRJrgzuwifqRIk5zFnBwjDq6wWlBfLS_HYZrljXq0mKEzo9hIJvlh8W9LXaJHp3u8-Lr2zdfLt6trz5cvr94dbW2SsK0lhqFqkvQ0AhOXEsnXaO3WGtX8RLAkeKiRCtUo6ktFW_bGpG0dlhapFaeF8-OfccYvs-UJtP7ZKnrcKAwJ8NL3shK86q5HYUaKq7yyag6ojaGlCJtzRh9j_GQIbOkZfbmlJZZ0jIgTU4r1z05WcxtT-5v1Z94MvD0BGCy2G0jDtanf1xVCiU1ZO7lkcuTpRtP0STrabDkfMzzNS74W7_y4r8OtvODz6bf6EBpH-Y45GAMNynXmM_Lai2bxQUA51rJXwMqy6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080615061</pqid></control><display><type>article</type><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><source>ScienceDirect</source><source>MEDLINE</source><creator>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</creator><creatorcontrib>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</creatorcontrib><description>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P &lt; .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</description><identifier>ISSN: 0026-0495</identifier><identifier>EISSN: 1532-8600</identifier><identifier>DOI: 10.1016/j.metabol.2012.03.015</identifier><identifier>PMID: 22560055</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adiponectin ; Adiponectin - blood ; Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Body temperature ; Body Temperature Regulation ; Down-Regulation ; Endocrinology &amp; Metabolism ; Feeding. Feeding behavior ; Fundamental and applied biological sciences. Psychology ; G-protein coupled receptor 83 ; IGF-1 ; Insulin ; Insulin-Like Growth Factor I - analysis ; Knockdown ; Lentivirus ; Leptin ; Leptin - blood ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Preoptic area ; Preoptic Area - physiology ; Receptors, G-Protein-Coupled - antagonists &amp; inhibitors ; Receptors, G-Protein-Coupled - physiology ; RNA, Small Interfering - genetics ; RNAi ; shRNA ; Thermoregulation ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Warm sensitive neurons ; Weight Gain</subject><ispartof>Metabolism, clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</citedby><cites>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.metabol.2012.03.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26425370$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22560055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubins, Jeffrey S</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Zhukov, Victor</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Moroncini, Gianluca</creatorcontrib><creatorcontrib>Carvajal-Gonzalez, Santos</creatorcontrib><creatorcontrib>Hadcock, John R</creatorcontrib><creatorcontrib>Bartfai, Tamas</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><title>Metabolism, clinical and experimental</title><addtitle>Metabolism</addtitle><description>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P &lt; .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</description><subject>Adiponectin</subject><subject>Adiponectin - blood</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Body temperature</subject><subject>Body Temperature Regulation</subject><subject>Down-Regulation</subject><subject>Endocrinology &amp; Metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G-protein coupled receptor 83</subject><subject>IGF-1</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor I - analysis</subject><subject>Knockdown</subject><subject>Lentivirus</subject><subject>Leptin</subject><subject>Leptin - blood</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Sequence Data</subject><subject>Preoptic area</subject><subject>Preoptic Area - physiology</subject><subject>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNAi</subject><subject>shRNA</subject><subject>Thermoregulation</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Warm sensitive neurons</subject><subject>Weight Gain</subject><issn>0026-0495</issn><issn>1532-8600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-O0zAQxiMEYsvCI4B8QeLSMrbjOLmA0AIL0kog_pytiT3duiRxsJNFfQGeG4cWkLjswbL16TfzWfNNUTzmsOHAq-f7TU8TtqHbCOBiA3IDXN0pVlxJsa4rgLvFCkBUaygbdVY8SGkPAFrX1f3iTAiVCaVWxc_X4ccQ6XrucPJhYGHLLj9-qiXzA5t2xHaHMUw77LD3lo2RwjjlB0ZCFsnNlhKzIRJrgzuwifqRIk5zFnBwjDq6wWlBfLS_HYZrljXq0mKEzo9hIJvlh8W9LXaJHp3u8-Lr2zdfLt6trz5cvr94dbW2SsK0lhqFqkvQ0AhOXEsnXaO3WGtX8RLAkeKiRCtUo6ktFW_bGpG0dlhapFaeF8-OfccYvs-UJtP7ZKnrcKAwJ8NL3shK86q5HYUaKq7yyag6ojaGlCJtzRh9j_GQIbOkZfbmlJZZ0jIgTU4r1z05WcxtT-5v1Z94MvD0BGCy2G0jDtanf1xVCiU1ZO7lkcuTpRtP0STrabDkfMzzNS74W7_y4r8OtvODz6bf6EBpH-Y45GAMNynXmM_Lai2bxQUA51rJXwMqy6I</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Dubins, Jeffrey S</creator><creator>Sanchez-Alavez, Manuel</creator><creator>Zhukov, Victor</creator><creator>Sanchez-Gonzalez, Alejandro</creator><creator>Moroncini, Gianluca</creator><creator>Carvajal-Gonzalez, Santos</creator><creator>Hadcock, John R</creator><creator>Bartfai, Tamas</creator><creator>Conti, Bruno</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20121001</creationdate><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><author>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiponectin</topic><topic>Adiponectin - blood</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Body temperature</topic><topic>Body Temperature Regulation</topic><topic>Down-Regulation</topic><topic>Endocrinology &amp; Metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G-protein coupled receptor 83</topic><topic>IGF-1</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor I - analysis</topic><topic>Knockdown</topic><topic>Lentivirus</topic><topic>Leptin</topic><topic>Leptin - blood</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Sequence Data</topic><topic>Preoptic area</topic><topic>Preoptic Area - physiology</topic><topic>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNAi</topic><topic>shRNA</topic><topic>Thermoregulation</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Warm sensitive neurons</topic><topic>Weight Gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubins, Jeffrey S</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Zhukov, Victor</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Moroncini, Gianluca</creatorcontrib><creatorcontrib>Carvajal-Gonzalez, Santos</creatorcontrib><creatorcontrib>Hadcock, John R</creatorcontrib><creatorcontrib>Bartfai, Tamas</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Metabolism, clinical and experimental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubins, Jeffrey S</au><au>Sanchez-Alavez, Manuel</au><au>Zhukov, Victor</au><au>Sanchez-Gonzalez, Alejandro</au><au>Moroncini, Gianluca</au><au>Carvajal-Gonzalez, Santos</au><au>Hadcock, John R</au><au>Bartfai, Tamas</au><au>Conti, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</atitle><jtitle>Metabolism, clinical and experimental</jtitle><addtitle>Metabolism</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>61</volume><issue>10</issue><spage>1486</spage><epage>1493</epage><pages>1486-1493</pages><issn>0026-0495</issn><eissn>1532-8600</eissn><abstract>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P &lt; .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>22560055</pmid><doi>10.1016/j.metabol.2012.03.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-0495
ispartof Metabolism, clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493
issn 0026-0495
1532-8600
language eng
recordid cdi_proquest_miscellaneous_1419367169
source ScienceDirect; MEDLINE
subjects Adiponectin
Adiponectin - blood
Amino Acid Sequence
Animals
Base Sequence
Biological and medical sciences
Body temperature
Body Temperature Regulation
Down-Regulation
Endocrinology & Metabolism
Feeding. Feeding behavior
Fundamental and applied biological sciences. Psychology
G-protein coupled receptor 83
IGF-1
Insulin
Insulin-Like Growth Factor I - analysis
Knockdown
Lentivirus
Leptin
Leptin - blood
Male
Mice
Mice, Inbred C57BL
Molecular Sequence Data
Preoptic area
Preoptic Area - physiology
Receptors, G-Protein-Coupled - antagonists & inhibitors
Receptors, G-Protein-Coupled - physiology
RNA, Small Interfering - genetics
RNAi
shRNA
Thermoregulation
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Warm sensitive neurons
Weight Gain
title Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20GPR83%20in%20the%20hypothalamic%20preoptic%20area%20reduces%20core%20body%20temperature%20and%20elevates%20circulating%20levels%20of%20adiponectin&rft.jtitle=Metabolism,%20clinical%20and%20experimental&rft.au=Dubins,%20Jeffrey%20S&rft.date=2012-10-01&rft.volume=61&rft.issue=10&rft.spage=1486&rft.epage=1493&rft.pages=1486-1493&rft.issn=0026-0495&rft.eissn=1532-8600&rft_id=info:doi/10.1016/j.metabol.2012.03.015&rft_dat=%3Cproquest_cross%3E1419367169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080615061&rft_id=info:pmid/22560055&rft_els_id=S0026049512001175&rfr_iscdi=true