Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin
Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing...
Gespeichert in:
Veröffentlicht in: | Metabolism, clinical and experimental clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1493 |
---|---|
container_issue | 10 |
container_start_page | 1486 |
container_title | Metabolism, clinical and experimental |
container_volume | 61 |
creator | Dubins, Jeffrey S Sanchez-Alavez, Manuel Zhukov, Victor Sanchez-Gonzalez, Alejandro Moroncini, Gianluca Carvajal-Gonzalez, Santos Hadcock, John R Bartfai, Tamas Conti, Bruno |
description | Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P < .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation. |
doi_str_mv | 10.1016/j.metabol.2012.03.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419367169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0026049512001175</els_id><sourcerecordid>1419367169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</originalsourceid><addsrcrecordid>eNqFks-O0zAQxiMEYsvCI4B8QeLSMrbjOLmA0AIL0kog_pytiT3duiRxsJNFfQGeG4cWkLjswbL16TfzWfNNUTzmsOHAq-f7TU8TtqHbCOBiA3IDXN0pVlxJsa4rgLvFCkBUaygbdVY8SGkPAFrX1f3iTAiVCaVWxc_X4ccQ6XrucPJhYGHLLj9-qiXzA5t2xHaHMUw77LD3lo2RwjjlB0ZCFsnNlhKzIRJrgzuwifqRIk5zFnBwjDq6wWlBfLS_HYZrljXq0mKEzo9hIJvlh8W9LXaJHp3u8-Lr2zdfLt6trz5cvr94dbW2SsK0lhqFqkvQ0AhOXEsnXaO3WGtX8RLAkeKiRCtUo6ktFW_bGpG0dlhapFaeF8-OfccYvs-UJtP7ZKnrcKAwJ8NL3shK86q5HYUaKq7yyag6ojaGlCJtzRh9j_GQIbOkZfbmlJZZ0jIgTU4r1z05WcxtT-5v1Z94MvD0BGCy2G0jDtanf1xVCiU1ZO7lkcuTpRtP0STrabDkfMzzNS74W7_y4r8OtvODz6bf6EBpH-Y45GAMNynXmM_Lai2bxQUA51rJXwMqy6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080615061</pqid></control><display><type>article</type><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><source>ScienceDirect</source><source>MEDLINE</source><creator>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</creator><creatorcontrib>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</creatorcontrib><description>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P < .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</description><identifier>ISSN: 0026-0495</identifier><identifier>EISSN: 1532-8600</identifier><identifier>DOI: 10.1016/j.metabol.2012.03.015</identifier><identifier>PMID: 22560055</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adiponectin ; Adiponectin - blood ; Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Body temperature ; Body Temperature Regulation ; Down-Regulation ; Endocrinology & Metabolism ; Feeding. Feeding behavior ; Fundamental and applied biological sciences. Psychology ; G-protein coupled receptor 83 ; IGF-1 ; Insulin ; Insulin-Like Growth Factor I - analysis ; Knockdown ; Lentivirus ; Leptin ; Leptin - blood ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Preoptic area ; Preoptic Area - physiology ; Receptors, G-Protein-Coupled - antagonists & inhibitors ; Receptors, G-Protein-Coupled - physiology ; RNA, Small Interfering - genetics ; RNAi ; shRNA ; Thermoregulation ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Warm sensitive neurons ; Weight Gain</subject><ispartof>Metabolism, clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</citedby><cites>FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.metabol.2012.03.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26425370$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22560055$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dubins, Jeffrey S</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Zhukov, Victor</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Moroncini, Gianluca</creatorcontrib><creatorcontrib>Carvajal-Gonzalez, Santos</creatorcontrib><creatorcontrib>Hadcock, John R</creatorcontrib><creatorcontrib>Bartfai, Tamas</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><title>Metabolism, clinical and experimental</title><addtitle>Metabolism</addtitle><description>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P < .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</description><subject>Adiponectin</subject><subject>Adiponectin - blood</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Body temperature</subject><subject>Body Temperature Regulation</subject><subject>Down-Regulation</subject><subject>Endocrinology & Metabolism</subject><subject>Feeding. Feeding behavior</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>G-protein coupled receptor 83</subject><subject>IGF-1</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor I - analysis</subject><subject>Knockdown</subject><subject>Lentivirus</subject><subject>Leptin</subject><subject>Leptin - blood</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Sequence Data</subject><subject>Preoptic area</subject><subject>Preoptic Area - physiology</subject><subject>Receptors, G-Protein-Coupled - antagonists & inhibitors</subject><subject>Receptors, G-Protein-Coupled - physiology</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNAi</subject><subject>shRNA</subject><subject>Thermoregulation</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Warm sensitive neurons</subject><subject>Weight Gain</subject><issn>0026-0495</issn><issn>1532-8600</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-O0zAQxiMEYsvCI4B8QeLSMrbjOLmA0AIL0kog_pytiT3duiRxsJNFfQGeG4cWkLjswbL16TfzWfNNUTzmsOHAq-f7TU8TtqHbCOBiA3IDXN0pVlxJsa4rgLvFCkBUaygbdVY8SGkPAFrX1f3iTAiVCaVWxc_X4ccQ6XrucPJhYGHLLj9-qiXzA5t2xHaHMUw77LD3lo2RwjjlB0ZCFsnNlhKzIRJrgzuwifqRIk5zFnBwjDq6wWlBfLS_HYZrljXq0mKEzo9hIJvlh8W9LXaJHp3u8-Lr2zdfLt6trz5cvr94dbW2SsK0lhqFqkvQ0AhOXEsnXaO3WGtX8RLAkeKiRCtUo6ktFW_bGpG0dlhapFaeF8-OfccYvs-UJtP7ZKnrcKAwJ8NL3shK86q5HYUaKq7yyag6ojaGlCJtzRh9j_GQIbOkZfbmlJZZ0jIgTU4r1z05WcxtT-5v1Z94MvD0BGCy2G0jDtanf1xVCiU1ZO7lkcuTpRtP0STrabDkfMzzNS74W7_y4r8OtvODz6bf6EBpH-Y45GAMNynXmM_Lai2bxQUA51rJXwMqy6I</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Dubins, Jeffrey S</creator><creator>Sanchez-Alavez, Manuel</creator><creator>Zhukov, Victor</creator><creator>Sanchez-Gonzalez, Alejandro</creator><creator>Moroncini, Gianluca</creator><creator>Carvajal-Gonzalez, Santos</creator><creator>Hadcock, John R</creator><creator>Bartfai, Tamas</creator><creator>Conti, Bruno</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20121001</creationdate><title>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</title><author>Dubins, Jeffrey S ; Sanchez-Alavez, Manuel ; Zhukov, Victor ; Sanchez-Gonzalez, Alejandro ; Moroncini, Gianluca ; Carvajal-Gonzalez, Santos ; Hadcock, John R ; Bartfai, Tamas ; Conti, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-37a2584070921e173d3d97fa87d61400de5124ac2597eb451bb8aae77da4caeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiponectin</topic><topic>Adiponectin - blood</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Body temperature</topic><topic>Body Temperature Regulation</topic><topic>Down-Regulation</topic><topic>Endocrinology & Metabolism</topic><topic>Feeding. Feeding behavior</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>G-protein coupled receptor 83</topic><topic>IGF-1</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor I - analysis</topic><topic>Knockdown</topic><topic>Lentivirus</topic><topic>Leptin</topic><topic>Leptin - blood</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Sequence Data</topic><topic>Preoptic area</topic><topic>Preoptic Area - physiology</topic><topic>Receptors, G-Protein-Coupled - antagonists & inhibitors</topic><topic>Receptors, G-Protein-Coupled - physiology</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNAi</topic><topic>shRNA</topic><topic>Thermoregulation</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Warm sensitive neurons</topic><topic>Weight Gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubins, Jeffrey S</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Zhukov, Victor</creatorcontrib><creatorcontrib>Sanchez-Gonzalez, Alejandro</creatorcontrib><creatorcontrib>Moroncini, Gianluca</creatorcontrib><creatorcontrib>Carvajal-Gonzalez, Santos</creatorcontrib><creatorcontrib>Hadcock, John R</creatorcontrib><creatorcontrib>Bartfai, Tamas</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Metabolism, clinical and experimental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubins, Jeffrey S</au><au>Sanchez-Alavez, Manuel</au><au>Zhukov, Victor</au><au>Sanchez-Gonzalez, Alejandro</au><au>Moroncini, Gianluca</au><au>Carvajal-Gonzalez, Santos</au><au>Hadcock, John R</au><au>Bartfai, Tamas</au><au>Conti, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin</atitle><jtitle>Metabolism, clinical and experimental</jtitle><addtitle>Metabolism</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>61</volume><issue>10</issue><spage>1486</spage><epage>1493</epage><pages>1486-1493</pages><issn>0026-0495</issn><eissn>1532-8600</eissn><abstract>Abstract The G protein-coupled receptor 83 (GPR83) was recently demonstrated in warm sensitive neurons (WSN) of the hypothalamic preoptic area (POA) that participate in temperature homeostasis. Thus, we investigated whether GPR83 may have a role in regulating core body temperature (CBT) by reducing its expression in the POA. Dissipation of energy in the form of heat is the primary mode of energy expenditure in mammals and can ultimately affect energy homeostasis. Thus, we also measured the level of important regulators of metabolism. Downregulation of GPR83 was obtained by lentiviral short-hairpin RNAs (shGPR83) vectors designed and selected for their ability to reduce GPR83 levels in vitro. Mice received POA injection of shGPR83 or non-silencing vectors and were monitored for CBT, motor activity, food intake body weight and circulating levels of IGF-1, insulin, leptin and adiponectin. Down-regulation of GPR83 in the POA resulted in a small (0.15 °C) but significant reduction of CBT during the dark/active cycle of the day. Temperature reduction was followed by increased body weight gain independent of caloric intake. shGPR83 mice also had increased level of circulating adiponectin (31916 ± 952 pg/mL vs. 23474 ± 1507 pg/mL, P < .01) while no change was observed for insulin, IGF-1 or leptin. GPR83 may participate in central thermoregulation and the central control of circulating adiponectin. Further work is required to determine how GPR83 can affect POA WSN and what are the long term metabolic consequences of its down-regulation.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>22560055</pmid><doi>10.1016/j.metabol.2012.03.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-0495 |
ispartof | Metabolism, clinical and experimental, 2012-10, Vol.61 (10), p.1486-1493 |
issn | 0026-0495 1532-8600 |
language | eng |
recordid | cdi_proquest_miscellaneous_1419367169 |
source | ScienceDirect; MEDLINE |
subjects | Adiponectin Adiponectin - blood Amino Acid Sequence Animals Base Sequence Biological and medical sciences Body temperature Body Temperature Regulation Down-Regulation Endocrinology & Metabolism Feeding. Feeding behavior Fundamental and applied biological sciences. Psychology G-protein coupled receptor 83 IGF-1 Insulin Insulin-Like Growth Factor I - analysis Knockdown Lentivirus Leptin Leptin - blood Male Mice Mice, Inbred C57BL Molecular Sequence Data Preoptic area Preoptic Area - physiology Receptors, G-Protein-Coupled - antagonists & inhibitors Receptors, G-Protein-Coupled - physiology RNA, Small Interfering - genetics RNAi shRNA Thermoregulation Vertebrates: anatomy and physiology, studies on body, several organs or systems Warm sensitive neurons Weight Gain |
title | Downregulation of GPR83 in the hypothalamic preoptic area reduces core body temperature and elevates circulating levels of adiponectin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downregulation%20of%20GPR83%20in%20the%20hypothalamic%20preoptic%20area%20reduces%20core%20body%20temperature%20and%20elevates%20circulating%20levels%20of%20adiponectin&rft.jtitle=Metabolism,%20clinical%20and%20experimental&rft.au=Dubins,%20Jeffrey%20S&rft.date=2012-10-01&rft.volume=61&rft.issue=10&rft.spage=1486&rft.epage=1493&rft.pages=1486-1493&rft.issn=0026-0495&rft.eissn=1532-8600&rft_id=info:doi/10.1016/j.metabol.2012.03.015&rft_dat=%3Cproquest_cross%3E1419367169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080615061&rft_id=info:pmid/22560055&rft_els_id=S0026049512001175&rfr_iscdi=true |