Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells

Aims The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons. Methods We evaluated how activation of voltage‐gated K+ current (IK) at the cellular level could be coupled to Na+ influx through voltage‐gated Na+ cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Physiologica 2012-10, Vol.206 (2), p.120-134
Hauptverfasser: Wu, S.-N., Yeh, C.-C., Huang, H.-C., So, E. C., Lo, Y.-C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue 2
container_start_page 120
container_title Acta Physiologica
container_volume 206
creator Wu, S.-N.
Yeh, C.-C.
Huang, H.-C.
So, E. C.
Lo, Y.-C.
description Aims The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons. Methods We evaluated how activation of voltage‐gated K+ current (IK) at the cellular level could be coupled to Na+ influx through voltage‐gated Na+ current (INa) in two motor neuron‐like cells (NG108‐15 and NSC‐34 cells). Results Increasing stimulation frequency altered the amplitudes of both INa and IK simultaneously. With changes in stimulation frequency, the kinetics of both INa inactivation and IK activation were well correlated at the same cell. Addition of tetrodotoxin or ranolazine reduced the amplitudes of both INa and IK simultaneously. Tefluthrin (Tef) increased the amplitudes of both INa and IK throughout the voltages ranging from −30 to + 10 mV. In cell‐attached recordings, single‐channel conductance from a linear current‐voltage relation was 94 ± 3 pS (n = 7). Tef (10 μm) enhanced channel activity with no change in single‐channel conductance. Tef increased spike firing accompanied by enhanced facilitation of spike‐frequency adaptation. Riluzole (10 μm) reversed Tef‐stimulated activity of KNa channels. In motor neuron‐like NSC‐34 cells, increasing stimulation frequency altered the kinetics of both INa and IK. Modelling studies of motor neurons were simulated to demonstrate that the magnitude of IK(Na) modulates AP firing. Conclusions There is a direct association of Na+ and KNa channels which can provide the rapid activation of KNa channels required to regulate AP firing occurring in motor neurons.
doi_str_mv 10.1111/j.1748-1716.2012.02438.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419363594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957298291</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3958-cf271bb11f3f789f74e879b0f3bb1d6b9fab472a251743a8da3f3b44f3bfb4a23</originalsourceid><addsrcrecordid>eNqFkl1v0zAUhiMEYtO2v4AsISRuEvyVOL5BqsrWIaaCBohLy0ls5s6xi51s7fbncdZSJG7whX10zqPj9_h1lgEEC5TWu1WBGK1zxFBVYIhwATEldbF5lh0fCs8PMayPsrMYVxAmFBGK8cvsCOOSkArXx9njuVXtEPz6ZhuNt_6naaUF7Y0Msh1UMA9yMN4Br0H0nRn7PKXNnRxUB9Z-kDGm3IQ7p2wExoHlAsF0bwmk68Dy6zwnFPR-8AE4NQbvcmtuFWiVtfE0e6Gljepsf55k3y_Ov80v86vPi4_z2VVuCC_rvNWYoaZBSBPNaq4ZVTXjDdQkJbuq4Vo2lGGJyzQykXUnSSpRmjbdUInJSfZ213cd_K9RxUH0Jk4KpFN-jAJRxElFSk7_j0JSQzbZkNDX_6ArPwaXBhGIVRXmOIlK1Ks9NTa96sQ6mF6GrfjjQALe7AEZ09PrIF1r4l8u6YIc8sS933H3xqrtoY6gmNSIlZj8FpP3YvoU4ulTiI2YfbmcTWFqkO8amDiozaGBDLeiYoSV4sdyIT5dX3wgy2soIPkNv_a4GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766292472</pqid></control><display><type>article</type><title>Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Wu, S.-N. ; Yeh, C.-C. ; Huang, H.-C. ; So, E. C. ; Lo, Y.-C.</creator><creatorcontrib>Wu, S.-N. ; Yeh, C.-C. ; Huang, H.-C. ; So, E. C. ; Lo, Y.-C.</creatorcontrib><description>Aims The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons. Methods We evaluated how activation of voltage‐gated K+ current (IK) at the cellular level could be coupled to Na+ influx through voltage‐gated Na+ current (INa) in two motor neuron‐like cells (NG108‐15 and NSC‐34 cells). Results Increasing stimulation frequency altered the amplitudes of both INa and IK simultaneously. With changes in stimulation frequency, the kinetics of both INa inactivation and IK activation were well correlated at the same cell. Addition of tetrodotoxin or ranolazine reduced the amplitudes of both INa and IK simultaneously. Tefluthrin (Tef) increased the amplitudes of both INa and IK throughout the voltages ranging from −30 to + 10 mV. In cell‐attached recordings, single‐channel conductance from a linear current‐voltage relation was 94 ± 3 pS (n = 7). Tef (10 μm) enhanced channel activity with no change in single‐channel conductance. Tef increased spike firing accompanied by enhanced facilitation of spike‐frequency adaptation. Riluzole (10 μm) reversed Tef‐stimulated activity of KNa channels. In motor neuron‐like NSC‐34 cells, increasing stimulation frequency altered the kinetics of both INa and IK. Modelling studies of motor neurons were simulated to demonstrate that the magnitude of IK(Na) modulates AP firing. Conclusions There is a direct association of Na+ and KNa channels which can provide the rapid activation of KNa channels required to regulate AP firing occurring in motor neurons.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/j.1748-1716.2012.02438.x</identifier><identifier>PMID: 22533628</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Acetanilides - pharmacology ; Action Potentials ; Animals ; Biological and medical sciences ; Cell Line, Tumor ; Cyclopropanes - pharmacology ; Electric Stimulation ; Fundamental and applied biological sciences. Psychology ; Hydrocarbons, Fluorinated - pharmacology ; Ion Channel Gating - drug effects ; K+ current ; Kinetics ; Mice ; Models, Neurological ; motor neurons ; Motor Neurons - metabolism ; Na+ current ; Na+-activated K+ channels ; Patch-Clamp Techniques ; Piperazines - pharmacology ; Potassium - metabolism ; Potassium Channels, Voltage-Gated - drug effects ; Potassium Channels, Voltage-Gated - metabolism ; pyrethroid ; Ranolazine ; Rats ; Riluzole - pharmacology ; simulation ; Sodium - metabolism ; Sodium Channel Blockers - pharmacology ; Tetrodotoxin - pharmacology ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Voltage-Gated Sodium Channels - drug effects ; Voltage-Gated Sodium Channels - metabolism</subject><ispartof>Acta Physiologica, 2012-10, Vol.206 (2), p.120-134</ispartof><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.</rights><rights>Copyright © 2012 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1748-1716.2012.02438.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1748-1716.2012.02438.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26350909$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22533628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, S.-N.</creatorcontrib><creatorcontrib>Yeh, C.-C.</creatorcontrib><creatorcontrib>Huang, H.-C.</creatorcontrib><creatorcontrib>So, E. C.</creatorcontrib><creatorcontrib>Lo, Y.-C.</creatorcontrib><title>Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells</title><title>Acta Physiologica</title><addtitle>Acta Physiol</addtitle><description>Aims The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons. Methods We evaluated how activation of voltage‐gated K+ current (IK) at the cellular level could be coupled to Na+ influx through voltage‐gated Na+ current (INa) in two motor neuron‐like cells (NG108‐15 and NSC‐34 cells). Results Increasing stimulation frequency altered the amplitudes of both INa and IK simultaneously. With changes in stimulation frequency, the kinetics of both INa inactivation and IK activation were well correlated at the same cell. Addition of tetrodotoxin or ranolazine reduced the amplitudes of both INa and IK simultaneously. Tefluthrin (Tef) increased the amplitudes of both INa and IK throughout the voltages ranging from −30 to + 10 mV. In cell‐attached recordings, single‐channel conductance from a linear current‐voltage relation was 94 ± 3 pS (n = 7). Tef (10 μm) enhanced channel activity with no change in single‐channel conductance. Tef increased spike firing accompanied by enhanced facilitation of spike‐frequency adaptation. Riluzole (10 μm) reversed Tef‐stimulated activity of KNa channels. In motor neuron‐like NSC‐34 cells, increasing stimulation frequency altered the kinetics of both INa and IK. Modelling studies of motor neurons were simulated to demonstrate that the magnitude of IK(Na) modulates AP firing. Conclusions There is a direct association of Na+ and KNa channels which can provide the rapid activation of KNa channels required to regulate AP firing occurring in motor neurons.</description><subject>Acetanilides - pharmacology</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line, Tumor</subject><subject>Cyclopropanes - pharmacology</subject><subject>Electric Stimulation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrocarbons, Fluorinated - pharmacology</subject><subject>Ion Channel Gating - drug effects</subject><subject>K+ current</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Models, Neurological</subject><subject>motor neurons</subject><subject>Motor Neurons - metabolism</subject><subject>Na+ current</subject><subject>Na+-activated K+ channels</subject><subject>Patch-Clamp Techniques</subject><subject>Piperazines - pharmacology</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels, Voltage-Gated - drug effects</subject><subject>Potassium Channels, Voltage-Gated - metabolism</subject><subject>pyrethroid</subject><subject>Ranolazine</subject><subject>Rats</subject><subject>Riluzole - pharmacology</subject><subject>simulation</subject><subject>Sodium - metabolism</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Tetrodotoxin - pharmacology</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Voltage-Gated Sodium Channels - drug effects</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl1v0zAUhiMEYtO2v4AsISRuEvyVOL5BqsrWIaaCBohLy0ls5s6xi51s7fbncdZSJG7whX10zqPj9_h1lgEEC5TWu1WBGK1zxFBVYIhwATEldbF5lh0fCs8PMayPsrMYVxAmFBGK8cvsCOOSkArXx9njuVXtEPz6ZhuNt_6naaUF7Y0Msh1UMA9yMN4Br0H0nRn7PKXNnRxUB9Z-kDGm3IQ7p2wExoHlAsF0bwmk68Dy6zwnFPR-8AE4NQbvcmtuFWiVtfE0e6Gljepsf55k3y_Ov80v86vPi4_z2VVuCC_rvNWYoaZBSBPNaq4ZVTXjDdQkJbuq4Vo2lGGJyzQykXUnSSpRmjbdUInJSfZ213cd_K9RxUH0Jk4KpFN-jAJRxElFSk7_j0JSQzbZkNDX_6ArPwaXBhGIVRXmOIlK1Ks9NTa96sQ6mF6GrfjjQALe7AEZ09PrIF1r4l8u6YIc8sS933H3xqrtoY6gmNSIlZj8FpP3YvoU4ulTiI2YfbmcTWFqkO8amDiozaGBDLeiYoSV4sdyIT5dX3wgy2soIPkNv_a4GA</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>Wu, S.-N.</creator><creator>Yeh, C.-C.</creator><creator>Huang, H.-C.</creator><creator>So, E. C.</creator><creator>Lo, Y.-C.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells</title><author>Wu, S.-N. ; Yeh, C.-C. ; Huang, H.-C. ; So, E. C. ; Lo, Y.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3958-cf271bb11f3f789f74e879b0f3bb1d6b9fab472a251743a8da3f3b44f3bfb4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acetanilides - pharmacology</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line, Tumor</topic><topic>Cyclopropanes - pharmacology</topic><topic>Electric Stimulation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrocarbons, Fluorinated - pharmacology</topic><topic>Ion Channel Gating - drug effects</topic><topic>K+ current</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Models, Neurological</topic><topic>motor neurons</topic><topic>Motor Neurons - metabolism</topic><topic>Na+ current</topic><topic>Na+-activated K+ channels</topic><topic>Patch-Clamp Techniques</topic><topic>Piperazines - pharmacology</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels, Voltage-Gated - drug effects</topic><topic>Potassium Channels, Voltage-Gated - metabolism</topic><topic>pyrethroid</topic><topic>Ranolazine</topic><topic>Rats</topic><topic>Riluzole - pharmacology</topic><topic>simulation</topic><topic>Sodium - metabolism</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Tetrodotoxin - pharmacology</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Voltage-Gated Sodium Channels - drug effects</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, S.-N.</creatorcontrib><creatorcontrib>Yeh, C.-C.</creatorcontrib><creatorcontrib>Huang, H.-C.</creatorcontrib><creatorcontrib>So, E. C.</creatorcontrib><creatorcontrib>Lo, Y.-C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, S.-N.</au><au>Yeh, C.-C.</au><au>Huang, H.-C.</au><au>So, E. C.</au><au>Lo, Y.-C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol</addtitle><date>2012-10</date><risdate>2012</risdate><volume>206</volume><issue>2</issue><spage>120</spage><epage>134</epage><pages>120-134</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aims The electrical properties of Na+‐activated K+ current (IK(Na)) and its contribution to spike firing has not been characterized in motor neurons. Methods We evaluated how activation of voltage‐gated K+ current (IK) at the cellular level could be coupled to Na+ influx through voltage‐gated Na+ current (INa) in two motor neuron‐like cells (NG108‐15 and NSC‐34 cells). Results Increasing stimulation frequency altered the amplitudes of both INa and IK simultaneously. With changes in stimulation frequency, the kinetics of both INa inactivation and IK activation were well correlated at the same cell. Addition of tetrodotoxin or ranolazine reduced the amplitudes of both INa and IK simultaneously. Tefluthrin (Tef) increased the amplitudes of both INa and IK throughout the voltages ranging from −30 to + 10 mV. In cell‐attached recordings, single‐channel conductance from a linear current‐voltage relation was 94 ± 3 pS (n = 7). Tef (10 μm) enhanced channel activity with no change in single‐channel conductance. Tef increased spike firing accompanied by enhanced facilitation of spike‐frequency adaptation. Riluzole (10 μm) reversed Tef‐stimulated activity of KNa channels. In motor neuron‐like NSC‐34 cells, increasing stimulation frequency altered the kinetics of both INa and IK. Modelling studies of motor neurons were simulated to demonstrate that the magnitude of IK(Na) modulates AP firing. Conclusions There is a direct association of Na+ and KNa channels which can provide the rapid activation of KNa channels required to regulate AP firing occurring in motor neurons.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>22533628</pmid><doi>10.1111/j.1748-1716.2012.02438.x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-1708
ispartof Acta Physiologica, 2012-10, Vol.206 (2), p.120-134
issn 1748-1708
1748-1716
language eng
recordid cdi_proquest_miscellaneous_1419363594
source MEDLINE; Wiley Journals
subjects Acetanilides - pharmacology
Action Potentials
Animals
Biological and medical sciences
Cell Line, Tumor
Cyclopropanes - pharmacology
Electric Stimulation
Fundamental and applied biological sciences. Psychology
Hydrocarbons, Fluorinated - pharmacology
Ion Channel Gating - drug effects
K+ current
Kinetics
Mice
Models, Neurological
motor neurons
Motor Neurons - metabolism
Na+ current
Na+-activated K+ channels
Patch-Clamp Techniques
Piperazines - pharmacology
Potassium - metabolism
Potassium Channels, Voltage-Gated - drug effects
Potassium Channels, Voltage-Gated - metabolism
pyrethroid
Ranolazine
Rats
Riluzole - pharmacology
simulation
Sodium - metabolism
Sodium Channel Blockers - pharmacology
Tetrodotoxin - pharmacology
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Voltage-Gated Sodium Channels - drug effects
Voltage-Gated Sodium Channels - metabolism
title Electrophysiological characterization of sodium-activated potassium channels in NG108-15 and NSC-34 motor neuron-like cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrophysiological%20characterization%20of%20sodium-activated%20potassium%20channels%20in%20NG108-15%20and%20NSC-34%20motor%20neuron-like%20cells&rft.jtitle=Acta%20Physiologica&rft.au=Wu,%20S.-N.&rft.date=2012-10&rft.volume=206&rft.issue=2&rft.spage=120&rft.epage=134&rft.pages=120-134&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/j.1748-1716.2012.02438.x&rft_dat=%3Cproquest_pubme%3E3957298291%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766292472&rft_id=info:pmid/22533628&rfr_iscdi=true