Identification of deleterious synonymous variants in human genomes
The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has i...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2013-08, Vol.29 (15), p.1843-1850 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1850 |
---|---|
container_issue | 15 |
container_start_page | 1843 |
container_title | Bioinformatics |
container_volume | 29 |
creator | Buske, Orion J Manickaraj, AshokKumar Mital, Seema Ray, Peter N Brudno, Michael |
description | The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has implicated synonymous (silent) exonic mutations in a number of disorders.
We have curated 33 such variants from literature and developed the Silent Variant Analyzer (SilVA), a machine-learning approach to separate these from among a large set of rare polymorphisms. We evaluate SilVA's performance on in silico 'infection' experiments, in which we implant known disease-causing mutations into a human genome, and show that for 15 of 33 disorders, we rank the implanted mutation among the top five most deleterious ones. Furthermore, we apply the SilVA method to two additional datasets: synonymous variants associated with Meckel syndrome, and a collection of silent variants clinically observed and stratified by a molecular diagnostics laboratory, and show that SilVA is able to accurately predict the harmfulness of silent variants in these datasets.
SilVA is open source and is freely available from the project website: http://compbio.cs.toronto.edu/silva
silva-snv@cs.toronto.edu
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btt308 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419362636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419362636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-74cec4406106cc20659dfc25fd7881d08de1539ec093ef6b62762a185ef4164a3</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EoqXwCKAcuYSu49hxjlDxU6kSFzhHjrMGo8QutovUtydVCxI3TjuHmdndj5BLCjcUajZvrbfO-DCoZHWctykxkEdkSpmo8lJSevyrgU3IWYwfAMCBi1MyKVjFBGfFlNwtO3TJGqvHHu8yb7IOe0wYrN_ELG6dd9thJ79UsMqlmFmXvW8G5bI3dH7AeE5OjOojXhzmjLw-3L8snvLV8-NycbvKNZN1yqtSoy5LEBSE1gUIXndGF9x0lZS0A9kh5axGPX6HRrSiqEShqORoSipKxWbket-7Dv5zgzE1g40a-145HA9saElrJgrBxD-sMEIEWVWjle-tOvgYA5pmHeygwrah0OxIN39JN3vSY-7qsGLTDtj9pn7Qsm-nbX-e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1401090877</pqid></control><display><type>article</type><title>Identification of deleterious synonymous variants in human genomes</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Buske, Orion J ; Manickaraj, AshokKumar ; Mital, Seema ; Ray, Peter N ; Brudno, Michael</creator><creatorcontrib>Buske, Orion J ; Manickaraj, AshokKumar ; Mital, Seema ; Ray, Peter N ; Brudno, Michael</creatorcontrib><description>The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has implicated synonymous (silent) exonic mutations in a number of disorders.
We have curated 33 such variants from literature and developed the Silent Variant Analyzer (SilVA), a machine-learning approach to separate these from among a large set of rare polymorphisms. We evaluate SilVA's performance on in silico 'infection' experiments, in which we implant known disease-causing mutations into a human genome, and show that for 15 of 33 disorders, we rank the implanted mutation among the top five most deleterious ones. Furthermore, we apply the SilVA method to two additional datasets: synonymous variants associated with Meckel syndrome, and a collection of silent variants clinically observed and stratified by a molecular diagnostics laboratory, and show that SilVA is able to accurately predict the harmfulness of silent variants in these datasets.
SilVA is open source and is freely available from the project website: http://compbio.cs.toronto.edu/silva
silva-snv@cs.toronto.edu
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>EISSN: 1460-2059</identifier><identifier>DOI: 10.1093/bioinformatics/btt308</identifier><identifier>PMID: 23736532</identifier><language>eng</language><publisher>England</publisher><subject>Artificial Intelligence ; Ciliary Motility Disorders - genetics ; Computer Simulation ; Disease - genetics ; Encephalocele - genetics ; Exons ; Genome, Human ; Genomics - methods ; Humans ; Mutation ; Polycystic Kidney Diseases - genetics ; Polymorphism, Genetic</subject><ispartof>Bioinformatics, 2013-08, Vol.29 (15), p.1843-1850</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-74cec4406106cc20659dfc25fd7881d08de1539ec093ef6b62762a185ef4164a3</citedby><cites>FETCH-LOGICAL-c389t-74cec4406106cc20659dfc25fd7881d08de1539ec093ef6b62762a185ef4164a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23736532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buske, Orion J</creatorcontrib><creatorcontrib>Manickaraj, AshokKumar</creatorcontrib><creatorcontrib>Mital, Seema</creatorcontrib><creatorcontrib>Ray, Peter N</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><title>Identification of deleterious synonymous variants in human genomes</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has implicated synonymous (silent) exonic mutations in a number of disorders.
We have curated 33 such variants from literature and developed the Silent Variant Analyzer (SilVA), a machine-learning approach to separate these from among a large set of rare polymorphisms. We evaluate SilVA's performance on in silico 'infection' experiments, in which we implant known disease-causing mutations into a human genome, and show that for 15 of 33 disorders, we rank the implanted mutation among the top five most deleterious ones. Furthermore, we apply the SilVA method to two additional datasets: synonymous variants associated with Meckel syndrome, and a collection of silent variants clinically observed and stratified by a molecular diagnostics laboratory, and show that SilVA is able to accurately predict the harmfulness of silent variants in these datasets.
SilVA is open source and is freely available from the project website: http://compbio.cs.toronto.edu/silva
silva-snv@cs.toronto.edu
Supplementary data are available at Bioinformatics online.</description><subject>Artificial Intelligence</subject><subject>Ciliary Motility Disorders - genetics</subject><subject>Computer Simulation</subject><subject>Disease - genetics</subject><subject>Encephalocele - genetics</subject><subject>Exons</subject><subject>Genome, Human</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>Mutation</subject><subject>Polycystic Kidney Diseases - genetics</subject><subject>Polymorphism, Genetic</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1460-2059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1OwzAQhC0EoqXwCKAcuYSu49hxjlDxU6kSFzhHjrMGo8QutovUtydVCxI3TjuHmdndj5BLCjcUajZvrbfO-DCoZHWctykxkEdkSpmo8lJSevyrgU3IWYwfAMCBi1MyKVjFBGfFlNwtO3TJGqvHHu8yb7IOe0wYrN_ELG6dd9thJ79UsMqlmFmXvW8G5bI3dH7AeE5OjOojXhzmjLw-3L8snvLV8-NycbvKNZN1yqtSoy5LEBSE1gUIXndGF9x0lZS0A9kh5axGPX6HRrSiqEShqORoSipKxWbket-7Dv5zgzE1g40a-145HA9saElrJgrBxD-sMEIEWVWjle-tOvgYA5pmHeygwrah0OxIN39JN3vSY-7qsGLTDtj9pn7Qsm-nbX-e</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Buske, Orion J</creator><creator>Manickaraj, AshokKumar</creator><creator>Mital, Seema</creator><creator>Ray, Peter N</creator><creator>Brudno, Michael</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130801</creationdate><title>Identification of deleterious synonymous variants in human genomes</title><author>Buske, Orion J ; Manickaraj, AshokKumar ; Mital, Seema ; Ray, Peter N ; Brudno, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-74cec4406106cc20659dfc25fd7881d08de1539ec093ef6b62762a185ef4164a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Ciliary Motility Disorders - genetics</topic><topic>Computer Simulation</topic><topic>Disease - genetics</topic><topic>Encephalocele - genetics</topic><topic>Exons</topic><topic>Genome, Human</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>Mutation</topic><topic>Polycystic Kidney Diseases - genetics</topic><topic>Polymorphism, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buske, Orion J</creatorcontrib><creatorcontrib>Manickaraj, AshokKumar</creatorcontrib><creatorcontrib>Mital, Seema</creatorcontrib><creatorcontrib>Ray, Peter N</creatorcontrib><creatorcontrib>Brudno, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buske, Orion J</au><au>Manickaraj, AshokKumar</au><au>Mital, Seema</au><au>Ray, Peter N</au><au>Brudno, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of deleterious synonymous variants in human genomes</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>29</volume><issue>15</issue><spage>1843</spage><epage>1850</epage><pages>1843-1850</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><eissn>1460-2059</eissn><abstract>The prioritization and identification of disease-causing mutations is one of the most significant challenges in medical genomics. Currently available methods address this problem for non-synonymous single nucleotide variants (SNVs) and variation in promoters/enhancers; however, recent research has implicated synonymous (silent) exonic mutations in a number of disorders.
We have curated 33 such variants from literature and developed the Silent Variant Analyzer (SilVA), a machine-learning approach to separate these from among a large set of rare polymorphisms. We evaluate SilVA's performance on in silico 'infection' experiments, in which we implant known disease-causing mutations into a human genome, and show that for 15 of 33 disorders, we rank the implanted mutation among the top five most deleterious ones. Furthermore, we apply the SilVA method to two additional datasets: synonymous variants associated with Meckel syndrome, and a collection of silent variants clinically observed and stratified by a molecular diagnostics laboratory, and show that SilVA is able to accurately predict the harmfulness of silent variants in these datasets.
SilVA is open source and is freely available from the project website: http://compbio.cs.toronto.edu/silva
silva-snv@cs.toronto.edu
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>23736532</pmid><doi>10.1093/bioinformatics/btt308</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2013-08, Vol.29 (15), p.1843-1850 |
issn | 1367-4803 1367-4811 1460-2059 |
language | eng |
recordid | cdi_proquest_miscellaneous_1419362636 |
source | MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Artificial Intelligence Ciliary Motility Disorders - genetics Computer Simulation Disease - genetics Encephalocele - genetics Exons Genome, Human Genomics - methods Humans Mutation Polycystic Kidney Diseases - genetics Polymorphism, Genetic |
title | Identification of deleterious synonymous variants in human genomes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A03%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20deleterious%20synonymous%20variants%20in%20human%20genomes&rft.jtitle=Bioinformatics&rft.au=Buske,%20Orion%20J&rft.date=2013-08-01&rft.volume=29&rft.issue=15&rft.spage=1843&rft.epage=1850&rft.pages=1843-1850&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btt308&rft_dat=%3Cproquest_cross%3E1419362636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1401090877&rft_id=info:pmid/23736532&rfr_iscdi=true |