Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry

Coil embolization is performed to induce flow stagnation in cerebral aneurysms and enhance blood clot formation, thus preventing rupture and further growth. We investigated hemodynamics in differently positioned aneurysms coiled at various packing densities to determine the effective packing density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2013-08, Vol.51 (8), p.901-910
Hauptverfasser: Otani, Tomohiro, Nakamura, Masanori, Fujinaka, Toshiyuki, Hirata, Masayuki, Kuroda, Junko, Shibano, Katsuhiko, Wada, Shigeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 910
container_issue 8
container_start_page 901
container_title Medical & biological engineering & computing
container_volume 51
creator Otani, Tomohiro
Nakamura, Masanori
Fujinaka, Toshiyuki
Hirata, Masayuki
Kuroda, Junko
Shibano, Katsuhiko
Wada, Shigeo
description Coil embolization is performed to induce flow stagnation in cerebral aneurysms and enhance blood clot formation, thus preventing rupture and further growth. We investigated hemodynamics in differently positioned aneurysms coiled at various packing densities to determine the effective packing density in terms of flow stagnation. As a first step, hemodynamic simulations were conducted for idealized geometries of both terminal- and sidewall-type aneurysms. Porous media modeling was employed to describe blood flow in coil-embolized aneurysms. The stagnant volume ratio (SVR) was analyzed to quantify the efficacy of coil embolization. Regardless of aneurysm type and angle, SVR increased with increasing packing density, but the increase in SVR varied depending on type. For sidewall-type aneurysms, the packing density required to achieve 60 % SVR was 20 %, roughly independent of aneurysm angle; flow stagnation was achieved at low packing density. In contrast, in terminal-type aneurysms, the packing density required to achieve 60 % SVR was highly dependent on aneurysm angle, accomplishing a 20 % packing density only for lower angles. Indications are that a relatively high packing density would be required, particularly when these aneurysms are angled against the parent artery. The packing density required for flow stagnation varies depending on aneurysm type and relative position.
doi_str_mv 10.1007/s11517-013-1062-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419361515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1419361515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-2f387393b0ff0376770b0882421e0d5c8c6ef10551f0bcd2e0a039e83d0d9bbe3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoMo7uzqA3iRgBcvrVX5M93xJoO6woIXPTfppDJk7e6MnW6kfQff2Yy9igjiJYHU7_uqUh9jTxBeIED9MiNqrCtAWSHsRaXvsR3WCitQSt1nO0AFpYrNBbvM-RZAoBbqIbsQUgujm3rHvh_ScFpmO8c02p6Hfome-3W0Q3SZp8C7PiVf3tNXHkfuUuwrGrrUx2_kuR1pmdY85FecQiA3nxUn6z7H8cg9jTnOK0_jJs-zPY4_G52dbDk92c3nSGmgeVofsQfB9pke391X7NPbNx8P19XNh3fvD69vKqdBzZUIsqmlkR2EALLe1zV00DRCCSTw2jVuTwFBawzQOS8ILEhDjfTgTdeRvGLPN9_TlL4slOd2iNlR35cPpSW3qNDIfVmu_j8qjTFSATQFffYXepuWqax1o5RRjTaFwo1yU8p5otCepjjYaW0R2nOs7RZrW2Jtz7G25yGe3jkv3UD-t-JXjgUQG5BLaTzS9Efrf7r-AHbgris</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399494859</pqid></control><display><type>article</type><title>Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Otani, Tomohiro ; Nakamura, Masanori ; Fujinaka, Toshiyuki ; Hirata, Masayuki ; Kuroda, Junko ; Shibano, Katsuhiko ; Wada, Shigeo</creator><creatorcontrib>Otani, Tomohiro ; Nakamura, Masanori ; Fujinaka, Toshiyuki ; Hirata, Masayuki ; Kuroda, Junko ; Shibano, Katsuhiko ; Wada, Shigeo</creatorcontrib><description>Coil embolization is performed to induce flow stagnation in cerebral aneurysms and enhance blood clot formation, thus preventing rupture and further growth. We investigated hemodynamics in differently positioned aneurysms coiled at various packing densities to determine the effective packing density in terms of flow stagnation. As a first step, hemodynamic simulations were conducted for idealized geometries of both terminal- and sidewall-type aneurysms. Porous media modeling was employed to describe blood flow in coil-embolized aneurysms. The stagnant volume ratio (SVR) was analyzed to quantify the efficacy of coil embolization. Regardless of aneurysm type and angle, SVR increased with increasing packing density, but the increase in SVR varied depending on type. For sidewall-type aneurysms, the packing density required to achieve 60 % SVR was 20 %, roughly independent of aneurysm angle; flow stagnation was achieved at low packing density. In contrast, in terminal-type aneurysms, the packing density required to achieve 60 % SVR was highly dependent on aneurysm angle, accomplishing a 20 % packing density only for lower angles. Indications are that a relatively high packing density would be required, particularly when these aneurysms are angled against the parent artery. The packing density required for flow stagnation varies depending on aneurysm type and relative position.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-013-1062-5</identifier><identifier>PMID: 23529587</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aneurysms ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Blood clots ; Computer Applications ; Computer Simulation ; Embolization ; Embolization, Therapeutic ; Flow control ; Geometry ; Hemodynamics ; Hemodynamics - physiology ; Human Physiology ; Humans ; Imaging ; Intracranial Aneurysm - pathology ; Intracranial Aneurysm - physiopathology ; Intracranial Aneurysm - therapy ; Models, Cardiovascular ; Original Article ; Radiology ; Regional Blood Flow - physiology ; Studies ; Vascular surgery ; Veins &amp; arteries</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2013-08, Vol.51 (8), p.901-910</ispartof><rights>International Federation for Medical and Biological Engineering 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-2f387393b0ff0376770b0882421e0d5c8c6ef10551f0bcd2e0a039e83d0d9bbe3</citedby><cites>FETCH-LOGICAL-c504t-2f387393b0ff0376770b0882421e0d5c8c6ef10551f0bcd2e0a039e83d0d9bbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-013-1062-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-013-1062-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23529587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Otani, Tomohiro</creatorcontrib><creatorcontrib>Nakamura, Masanori</creatorcontrib><creatorcontrib>Fujinaka, Toshiyuki</creatorcontrib><creatorcontrib>Hirata, Masayuki</creatorcontrib><creatorcontrib>Kuroda, Junko</creatorcontrib><creatorcontrib>Shibano, Katsuhiko</creatorcontrib><creatorcontrib>Wada, Shigeo</creatorcontrib><title>Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Coil embolization is performed to induce flow stagnation in cerebral aneurysms and enhance blood clot formation, thus preventing rupture and further growth. We investigated hemodynamics in differently positioned aneurysms coiled at various packing densities to determine the effective packing density in terms of flow stagnation. As a first step, hemodynamic simulations were conducted for idealized geometries of both terminal- and sidewall-type aneurysms. Porous media modeling was employed to describe blood flow in coil-embolized aneurysms. The stagnant volume ratio (SVR) was analyzed to quantify the efficacy of coil embolization. Regardless of aneurysm type and angle, SVR increased with increasing packing density, but the increase in SVR varied depending on type. For sidewall-type aneurysms, the packing density required to achieve 60 % SVR was 20 %, roughly independent of aneurysm angle; flow stagnation was achieved at low packing density. In contrast, in terminal-type aneurysms, the packing density required to achieve 60 % SVR was highly dependent on aneurysm angle, accomplishing a 20 % packing density only for lower angles. Indications are that a relatively high packing density would be required, particularly when these aneurysms are angled against the parent artery. The packing density required for flow stagnation varies depending on aneurysm type and relative position.</description><subject>Aneurysms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood clots</subject><subject>Computer Applications</subject><subject>Computer Simulation</subject><subject>Embolization</subject><subject>Embolization, Therapeutic</subject><subject>Flow control</subject><subject>Geometry</subject><subject>Hemodynamics</subject><subject>Hemodynamics - physiology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Intracranial Aneurysm - pathology</subject><subject>Intracranial Aneurysm - physiopathology</subject><subject>Intracranial Aneurysm - therapy</subject><subject>Models, Cardiovascular</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Regional Blood Flow - physiology</subject><subject>Studies</subject><subject>Vascular surgery</subject><subject>Veins &amp; arteries</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc-KFDEQxoMo7uzqA3iRgBcvrVX5M93xJoO6woIXPTfppDJk7e6MnW6kfQff2Yy9igjiJYHU7_uqUh9jTxBeIED9MiNqrCtAWSHsRaXvsR3WCitQSt1nO0AFpYrNBbvM-RZAoBbqIbsQUgujm3rHvh_ScFpmO8c02p6Hfome-3W0Q3SZp8C7PiVf3tNXHkfuUuwrGrrUx2_kuR1pmdY85FecQiA3nxUn6z7H8cg9jTnOK0_jJs-zPY4_G52dbDk92c3nSGmgeVofsQfB9pke391X7NPbNx8P19XNh3fvD69vKqdBzZUIsqmlkR2EALLe1zV00DRCCSTw2jVuTwFBawzQOS8ILEhDjfTgTdeRvGLPN9_TlL4slOd2iNlR35cPpSW3qNDIfVmu_j8qjTFSATQFffYXepuWqax1o5RRjTaFwo1yU8p5otCepjjYaW0R2nOs7RZrW2Jtz7G25yGe3jkv3UD-t-JXjgUQG5BLaTzS9Efrf7r-AHbgris</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Otani, Tomohiro</creator><creator>Nakamura, Masanori</creator><creator>Fujinaka, Toshiyuki</creator><creator>Hirata, Masayuki</creator><creator>Kuroda, Junko</creator><creator>Shibano, Katsuhiko</creator><creator>Wada, Shigeo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130801</creationdate><title>Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry</title><author>Otani, Tomohiro ; Nakamura, Masanori ; Fujinaka, Toshiyuki ; Hirata, Masayuki ; Kuroda, Junko ; Shibano, Katsuhiko ; Wada, Shigeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-2f387393b0ff0376770b0882421e0d5c8c6ef10551f0bcd2e0a039e83d0d9bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aneurysms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood clots</topic><topic>Computer Applications</topic><topic>Computer Simulation</topic><topic>Embolization</topic><topic>Embolization, Therapeutic</topic><topic>Flow control</topic><topic>Geometry</topic><topic>Hemodynamics</topic><topic>Hemodynamics - physiology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Intracranial Aneurysm - pathology</topic><topic>Intracranial Aneurysm - physiopathology</topic><topic>Intracranial Aneurysm - therapy</topic><topic>Models, Cardiovascular</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Regional Blood Flow - physiology</topic><topic>Studies</topic><topic>Vascular surgery</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otani, Tomohiro</creatorcontrib><creatorcontrib>Nakamura, Masanori</creatorcontrib><creatorcontrib>Fujinaka, Toshiyuki</creatorcontrib><creatorcontrib>Hirata, Masayuki</creatorcontrib><creatorcontrib>Kuroda, Junko</creatorcontrib><creatorcontrib>Shibano, Katsuhiko</creatorcontrib><creatorcontrib>Wada, Shigeo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otani, Tomohiro</au><au>Nakamura, Masanori</au><au>Fujinaka, Toshiyuki</au><au>Hirata, Masayuki</au><au>Kuroda, Junko</au><au>Shibano, Katsuhiko</au><au>Wada, Shigeo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>51</volume><issue>8</issue><spage>901</spage><epage>910</epage><pages>901-910</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Coil embolization is performed to induce flow stagnation in cerebral aneurysms and enhance blood clot formation, thus preventing rupture and further growth. We investigated hemodynamics in differently positioned aneurysms coiled at various packing densities to determine the effective packing density in terms of flow stagnation. As a first step, hemodynamic simulations were conducted for idealized geometries of both terminal- and sidewall-type aneurysms. Porous media modeling was employed to describe blood flow in coil-embolized aneurysms. The stagnant volume ratio (SVR) was analyzed to quantify the efficacy of coil embolization. Regardless of aneurysm type and angle, SVR increased with increasing packing density, but the increase in SVR varied depending on type. For sidewall-type aneurysms, the packing density required to achieve 60 % SVR was 20 %, roughly independent of aneurysm angle; flow stagnation was achieved at low packing density. In contrast, in terminal-type aneurysms, the packing density required to achieve 60 % SVR was highly dependent on aneurysm angle, accomplishing a 20 % packing density only for lower angles. Indications are that a relatively high packing density would be required, particularly when these aneurysms are angled against the parent artery. The packing density required for flow stagnation varies depending on aneurysm type and relative position.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23529587</pmid><doi>10.1007/s11517-013-1062-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2013-08, Vol.51 (8), p.901-910
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1419361515
source MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Aneurysms
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedicine
Blood clots
Computer Applications
Computer Simulation
Embolization
Embolization, Therapeutic
Flow control
Geometry
Hemodynamics
Hemodynamics - physiology
Human Physiology
Humans
Imaging
Intracranial Aneurysm - pathology
Intracranial Aneurysm - physiopathology
Intracranial Aneurysm - therapy
Models, Cardiovascular
Original Article
Radiology
Regional Blood Flow - physiology
Studies
Vascular surgery
Veins & arteries
title Computational fluid dynamics of blood flow in coil-embolized aneurysms: effect of packing density on flow stagnation in an idealized geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A45%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20fluid%20dynamics%20of%20blood%20flow%20in%20coil-embolized%20aneurysms:%20effect%20of%20packing%20density%20on%20flow%20stagnation%20in%20an%20idealized%20geometry&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Otani,%20Tomohiro&rft.date=2013-08-01&rft.volume=51&rft.issue=8&rft.spage=901&rft.epage=910&rft.pages=901-910&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-013-1062-5&rft_dat=%3Cproquest_cross%3E1419361515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399494859&rft_id=info:pmid/23529587&rfr_iscdi=true