Class 1 non-symbiotic and class 3 truncated hemoglobin-like genes are differentially expressed in stone fruit rootstocks (Prunus L.) with different degrees of tolerance to root hypoxia
Root hypoxia produced by flooding or over-irrigation limits stone fruit tree development, particularly in orchards established on soils with restricted drainage. To overcome this problem, stone fruit trees are usually grafted on rootstocks (species or hybrid of the Prunus L. genus) with different de...
Gespeichert in:
Veröffentlicht in: | Tree genetics & genomes 2013-08, Vol.9 (4), p.1051-1063 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Root hypoxia produced by flooding or over-irrigation limits stone fruit tree development, particularly in orchards established on soils with restricted drainage. To overcome this problem, stone fruit trees are usually grafted on rootstocks (species or hybrid of the Prunus L. genus) with different degrees of tolerance to root hypoxia. However, the molecular base of such variability is largely unknown. In Arabidopsis thaliana (Heynh.), as well as in a number of crops and tree species, hemoglobin (Hb)-like genes stand out among hypoxia-related genes, but no such studies have been done with the Prunus species used as rootstocks. In this study, we analyzed the expression pattern of class 1 non-symbiotic Hb-like (nsHb) and class 3 truncated Hb-like (trHb) genes in Prunus rootstock roots with different responses to this stress. We observed that the putative Prunus nsHb and trHb genes were induced by root hypoxia in all analyzed Prunus genotypes, independently of their tolerance to hypoxia. However, Prunus nsHb and trHb genes had higher expression levels in roots of tolerant rootstocks. Prunus nsHb and trHb genes were also regulated by other abiotic stresses, such as salt stress and low temperatures. Our results suggest that changes in nsHb and trHb expressions could be part of the adaptive mechanisms that have evolved in the Prunus species to survive under hypoxia or other types of environmental stress that commonly challenge stone fruit tree orchards. |
---|---|
ISSN: | 1614-2942 1614-2950 |
DOI: | 10.1007/s11295-013-0618-8 |