Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning

Condition-based maintenance is an effective way to reduce operation and maintenance cost of wind turbine. Highly complex and non-stationary operational conditions of wind turbine pose a challenge to conventional condition monitoring technique. Thus, a systematic multi-parameter health condition eval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2013-05, Vol.5 (3)
Hauptverfasser: Dong, Yuliang, Fang, Fang, Gu, Yujiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 5
creator Dong, Yuliang
Fang, Fang
Gu, Yujiong
description Condition-based maintenance is an effective way to reduce operation and maintenance cost of wind turbine. Highly complex and non-stationary operational conditions of wind turbine pose a challenge to conventional condition monitoring technique. Thus, a systematic multi-parameter health condition evaluation framework that considers the dynamic operational conditions is proposed. After characteristic parameter selection and Gaussian mixture model based multi-regime modeling, evidential reasoning is developed to evaluate the health condition of wind turbine. The proposed approach shows good health condition evaluation performance not only on the parameter level but also on the component and system level. Case studies indicate the effectiveness and potential applications of the proposed method for the wind turbine health condition evaluation.
doi_str_mv 10.1063/1.4808018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1419358433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671479933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-f9bba743c606a16e17d56f24bca5f6878ac7ff6159823d3f08819a59ede977263</originalsourceid><addsrcrecordid>eNqF0DtPwzAUBeAIgUQpDPwDj4BUsOPEjxGVp1SJBeboxr4Go8QucVLg31PaCpCQYLpn-O4ZTpYdMnrKqOBn7LRQVFGmtrIR0wWbSMry7R95N9tL6ZlSkdMyH2XNxXuA1huCC2gG6H0MJDry6oMl_dDVPiB5Qmj6J2JisH4FakhoyTJcw5CSh0Ba_7bUSNposSGwfMaFtxh6Dw3pEFIMPjzuZzsOmoQHmzvOHq4u76c3k9nd9e30fDYxXJT9xOm6BllwI6gAJpBJWwqXF7WB0gklFRjpnGClVjm33FGlmIZSo0UtZS74ODta9867-DJg6qvWJ4NNAwHjkComJCuk1pz_TwumeamKFT1eU9PFlDp01bzzLXTvFaPV5_gVqzbjL-3J2ibj-9WqX3gRu29Yza37C_9u_gAwrJOS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419358433</pqid></control><display><type>article</type><title>Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning</title><source>AIP Journals Complete</source><creator>Dong, Yuliang ; Fang, Fang ; Gu, Yujiong</creator><creatorcontrib>Dong, Yuliang ; Fang, Fang ; Gu, Yujiong</creatorcontrib><description>Condition-based maintenance is an effective way to reduce operation and maintenance cost of wind turbine. Highly complex and non-stationary operational conditions of wind turbine pose a challenge to conventional condition monitoring technique. Thus, a systematic multi-parameter health condition evaluation framework that considers the dynamic operational conditions is proposed. After characteristic parameter selection and Gaussian mixture model based multi-regime modeling, evidential reasoning is developed to evaluate the health condition of wind turbine. The proposed approach shows good health condition evaluation performance not only on the parameter level but also on the component and system level. Case studies indicate the effectiveness and potential applications of the proposed method for the wind turbine health condition evaluation.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/1.4808018</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><subject>Dynamic tests ; Dynamical systems ; Dynamics ; Evidential reasoning ; Gaussian ; Health ; Mathematical models ; Wind turbines</subject><ispartof>Journal of renewable and sustainable energy, 2013-05, Vol.5 (3)</ispartof><rights>AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-f9bba743c606a16e17d56f24bca5f6878ac7ff6159823d3f08819a59ede977263</citedby><cites>FETCH-LOGICAL-c365t-f9bba743c606a16e17d56f24bca5f6878ac7ff6159823d3f08819a59ede977263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/1.4808018$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Gu, Yujiong</creatorcontrib><title>Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning</title><title>Journal of renewable and sustainable energy</title><description>Condition-based maintenance is an effective way to reduce operation and maintenance cost of wind turbine. Highly complex and non-stationary operational conditions of wind turbine pose a challenge to conventional condition monitoring technique. Thus, a systematic multi-parameter health condition evaluation framework that considers the dynamic operational conditions is proposed. After characteristic parameter selection and Gaussian mixture model based multi-regime modeling, evidential reasoning is developed to evaluate the health condition of wind turbine. The proposed approach shows good health condition evaluation performance not only on the parameter level but also on the component and system level. Case studies indicate the effectiveness and potential applications of the proposed method for the wind turbine health condition evaluation.</description><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Evidential reasoning</subject><subject>Gaussian</subject><subject>Health</subject><subject>Mathematical models</subject><subject>Wind turbines</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0DtPwzAUBeAIgUQpDPwDj4BUsOPEjxGVp1SJBeboxr4Go8QucVLg31PaCpCQYLpn-O4ZTpYdMnrKqOBn7LRQVFGmtrIR0wWbSMry7R95N9tL6ZlSkdMyH2XNxXuA1huCC2gG6H0MJDry6oMl_dDVPiB5Qmj6J2JisH4FakhoyTJcw5CSh0Ba_7bUSNposSGwfMaFtxh6Dw3pEFIMPjzuZzsOmoQHmzvOHq4u76c3k9nd9e30fDYxXJT9xOm6BllwI6gAJpBJWwqXF7WB0gklFRjpnGClVjm33FGlmIZSo0UtZS74ODta9867-DJg6qvWJ4NNAwHjkComJCuk1pz_TwumeamKFT1eU9PFlDp01bzzLXTvFaPV5_gVqzbjL-3J2ibj-9WqX3gRu29Yza37C_9u_gAwrJOS</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Dong, Yuliang</creator><creator>Fang, Fang</creator><creator>Gu, Yujiong</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T2</scope><scope>7TG</scope><scope>7U2</scope><scope>7U6</scope><scope>C1K</scope><scope>KL.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning</title><author>Dong, Yuliang ; Fang, Fang ; Gu, Yujiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-f9bba743c606a16e17d56f24bca5f6878ac7ff6159823d3f08819a59ede977263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Evidential reasoning</topic><topic>Gaussian</topic><topic>Health</topic><topic>Mathematical models</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Yuliang</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Gu, Yujiong</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Yuliang</au><au>Fang, Fang</au><au>Gu, Yujiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>Condition-based maintenance is an effective way to reduce operation and maintenance cost of wind turbine. Highly complex and non-stationary operational conditions of wind turbine pose a challenge to conventional condition monitoring technique. Thus, a systematic multi-parameter health condition evaluation framework that considers the dynamic operational conditions is proposed. After characteristic parameter selection and Gaussian mixture model based multi-regime modeling, evidential reasoning is developed to evaluate the health condition of wind turbine. The proposed approach shows good health condition evaluation performance not only on the parameter level but also on the component and system level. Case studies indicate the effectiveness and potential applications of the proposed method for the wind turbine health condition evaluation.</abstract><doi>10.1063/1.4808018</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2013-05, Vol.5 (3)
issn 1941-7012
1941-7012
language eng
recordid cdi_proquest_miscellaneous_1419358433
source AIP Journals Complete
subjects Dynamic tests
Dynamical systems
Dynamics
Evidential reasoning
Gaussian
Health
Mathematical models
Wind turbines
title Dynamic evaluation of wind turbine health condition based on Gaussian mixture model and evidential reasoning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20evaluation%20of%20wind%20turbine%20health%20condition%20based%20on%20Gaussian%20mixture%20model%20and%20evidential%20reasoning&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Dong,%20Yuliang&rft.date=2013-05-01&rft.volume=5&rft.issue=3&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/1.4808018&rft_dat=%3Cproquest_cross%3E1671479933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419358433&rft_id=info:pmid/&rfr_iscdi=true