Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening
Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (32), p.13180-13185 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13185 |
---|---|
container_issue | 32 |
container_start_page | 13180 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Zaydman, Mark A. Silva, Jonathan R. Delaloye, Kelli Li, Yang Liang, Hongwu Larsson, H. Peter Shi, Jingyi Cui, Jianmin |
description | Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels. |
doi_str_mv | 10.1073/pnas.1305167110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418648179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712863</jstor_id><sourcerecordid>42712863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</originalsourceid><addsrcrecordid>eNqNkUuP0zAUhS0EYkphzQqwxIZNOvfaiR-bkdCIl6jEAmZteVKn4yq1M3ZSiX-PQ0t5rFhZ1v3u8Tk-hDxHWCFIfjkEm1fIoUEhEeEBWSBorESt4SFZADBZqZrVF-RJzjsA0I2Cx-SCcSWwVnpB1p8PcoXUx0DbOxuC6zNN7n7yyVFLez_4DR0jbeM09I4eYj_araPZhezDdp4MsZBxcKHcn5JHne2ze3Y6l-Tm_btv1x-r9ZcPn67frqu20ThWKFuHqnGqQ7tRrAYFWiqUdnOrZAO8E84C11a1XdegZNq13EnB0DIF3Am-JFdH3WG63btN68KYbG-G5Pc2fTfRevP3JPg7s40Hw2UNGngReHMSSPF-cnk0e59b1_c2uDhlg-UdxEaI_0BrVKIu7nVBX_-D7uKUQvmJmSoRS7q6UJdHqk0x5-S6s28EM5dq5lLN71LLxss_4575Xy0WgJ6AefMsV_Q4K0JzmiV5cUR2eYzpzNRMIlM_Y746zjsbjd0mn83NVwYoAIp31jT8B-sUuP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419788754</pqid></control><display><type>article</type><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</creator><creatorcontrib>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</creatorcontrib><description>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305167110</identifier><identifier>PMID: 23861489</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Amino Acid Sequence ; Animals ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; Blotting, Western ; Electric current ; Electric potential ; Female ; Genetic mutation ; Humans ; Ion Channel Gating - genetics ; Ion Channel Gating - physiology ; Ion channels ; Ions ; KCNQ1 Potassium Channel - chemistry ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; Lipids ; Membrane Potentials - genetics ; Membrane Potentials - physiology ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oocytes ; Oocytes - metabolism ; Oocytes - physiology ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate - chemistry ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Phosphatidylinositols ; Potassium channels ; Protein Binding ; Protein Structure, Tertiary ; protein-protein interactions ; Proteins ; Sensors ; Sequence Homology, Amino Acid ; Steady state current ; Tissues ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (32), p.13180-13185</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 6, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</citedby><cites>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaydman, Mark A.</creatorcontrib><creatorcontrib>Silva, Jonathan R.</creatorcontrib><creatorcontrib>Delaloye, Kelli</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liang, Hongwu</creatorcontrib><creatorcontrib>Larsson, H. Peter</creatorcontrib><creatorcontrib>Shi, Jingyi</creatorcontrib><creatorcontrib>Cui, Jianmin</creatorcontrib><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Female</subject><subject>Genetic mutation</subject><subject>Humans</subject><subject>Ion Channel Gating - genetics</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>KCNQ1 Potassium Channel - chemistry</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Lipids</subject><subject>Membrane Potentials - genetics</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Oocytes - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphatidylinositol 4,5-Diphosphate - chemistry</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Phosphatidylinositols</subject><subject>Potassium channels</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Sequence Homology, Amino Acid</subject><subject>Steady state current</subject><subject>Tissues</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP0zAUhS0EYkphzQqwxIZNOvfaiR-bkdCIl6jEAmZteVKn4yq1M3ZSiX-PQ0t5rFhZ1v3u8Tk-hDxHWCFIfjkEm1fIoUEhEeEBWSBorESt4SFZADBZqZrVF-RJzjsA0I2Cx-SCcSWwVnpB1p8PcoXUx0DbOxuC6zNN7n7yyVFLez_4DR0jbeM09I4eYj_araPZhezDdp4MsZBxcKHcn5JHne2ze3Y6l-Tm_btv1x-r9ZcPn67frqu20ThWKFuHqnGqQ7tRrAYFWiqUdnOrZAO8E84C11a1XdegZNq13EnB0DIF3Am-JFdH3WG63btN68KYbG-G5Pc2fTfRevP3JPg7s40Hw2UNGngReHMSSPF-cnk0e59b1_c2uDhlg-UdxEaI_0BrVKIu7nVBX_-D7uKUQvmJmSoRS7q6UJdHqk0x5-S6s28EM5dq5lLN71LLxss_4575Xy0WgJ6AefMsV_Q4K0JzmiV5cUR2eYzpzNRMIlM_Y746zjsbjd0mn83NVwYoAIp31jT8B-sUuP4</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Zaydman, Mark A.</creator><creator>Silva, Jonathan R.</creator><creator>Delaloye, Kelli</creator><creator>Li, Yang</creator><creator>Liang, Hongwu</creator><creator>Larsson, H. Peter</creator><creator>Shi, Jingyi</creator><creator>Cui, Jianmin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><author>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Female</topic><topic>Genetic mutation</topic><topic>Humans</topic><topic>Ion Channel Gating - genetics</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>KCNQ1 Potassium Channel - chemistry</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Lipids</topic><topic>Membrane Potentials - genetics</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Oocytes - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphatidylinositol 4,5-Diphosphate - chemistry</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Phosphatidylinositols</topic><topic>Potassium channels</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Sequence Homology, Amino Acid</topic><topic>Steady state current</topic><topic>Tissues</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaydman, Mark A.</creatorcontrib><creatorcontrib>Silva, Jonathan R.</creatorcontrib><creatorcontrib>Delaloye, Kelli</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liang, Hongwu</creatorcontrib><creatorcontrib>Larsson, H. Peter</creatorcontrib><creatorcontrib>Shi, Jingyi</creatorcontrib><creatorcontrib>Cui, Jianmin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaydman, Mark A.</au><au>Silva, Jonathan R.</au><au>Delaloye, Kelli</au><au>Li, Yang</au><au>Liang, Hongwu</au><au>Larsson, H. Peter</au><au>Shi, Jingyi</au><au>Cui, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>110</volume><issue>32</issue><spage>13180</spage><epage>13185</epage><pages>13180-13185</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23861489</pmid><doi>10.1073/pnas.1305167110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (32), p.13180-13185 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418648179 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Amino Acid Sequence Animals Binding sites Binding Sites - genetics Biological Sciences Blotting, Western Electric current Electric potential Female Genetic mutation Humans Ion Channel Gating - genetics Ion Channel Gating - physiology Ion channels Ions KCNQ1 Potassium Channel - chemistry KCNQ1 Potassium Channel - genetics KCNQ1 Potassium Channel - metabolism Lipids Membrane Potentials - genetics Membrane Potentials - physiology Models, Biological Models, Molecular Molecular Sequence Data Mutation Oocytes Oocytes - metabolism Oocytes - physiology Patch-Clamp Techniques Phosphatidylinositol 4,5-Diphosphate - chemistry Phosphatidylinositol 4,5-Diphosphate - metabolism Phosphatidylinositols Potassium channels Protein Binding Protein Structure, Tertiary protein-protein interactions Proteins Sensors Sequence Homology, Amino Acid Steady state current Tissues Xenopus laevis |
title | Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kv7.1%20ion%20channels%20require%20a%20lipid%20to%20couple%20voltage%20sensing%20to%20pore%20opening&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zaydman,%20Mark%20A.&rft.date=2013-08-06&rft.volume=110&rft.issue=32&rft.spage=13180&rft.epage=13185&rft.pages=13180-13185&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305167110&rft_dat=%3Cjstor_proqu%3E42712863%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419788754&rft_id=info:pmid/23861489&rft_jstor_id=42712863&rfr_iscdi=true |