Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening

Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-08, Vol.110 (32), p.13180-13185
Hauptverfasser: Zaydman, Mark A., Silva, Jonathan R., Delaloye, Kelli, Li, Yang, Liang, Hongwu, Larsson, H. Peter, Shi, Jingyi, Cui, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13185
container_issue 32
container_start_page 13180
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Zaydman, Mark A.
Silva, Jonathan R.
Delaloye, Kelli
Li, Yang
Liang, Hongwu
Larsson, H. Peter
Shi, Jingyi
Cui, Jianmin
description Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.
doi_str_mv 10.1073/pnas.1305167110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418648179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42712863</jstor_id><sourcerecordid>42712863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</originalsourceid><addsrcrecordid>eNqNkUuP0zAUhS0EYkphzQqwxIZNOvfaiR-bkdCIl6jEAmZteVKn4yq1M3ZSiX-PQ0t5rFhZ1v3u8Tk-hDxHWCFIfjkEm1fIoUEhEeEBWSBorESt4SFZADBZqZrVF-RJzjsA0I2Cx-SCcSWwVnpB1p8PcoXUx0DbOxuC6zNN7n7yyVFLez_4DR0jbeM09I4eYj_araPZhezDdp4MsZBxcKHcn5JHne2ze3Y6l-Tm_btv1x-r9ZcPn67frqu20ThWKFuHqnGqQ7tRrAYFWiqUdnOrZAO8E84C11a1XdegZNq13EnB0DIF3Am-JFdH3WG63btN68KYbG-G5Pc2fTfRevP3JPg7s40Hw2UNGngReHMSSPF-cnk0e59b1_c2uDhlg-UdxEaI_0BrVKIu7nVBX_-D7uKUQvmJmSoRS7q6UJdHqk0x5-S6s28EM5dq5lLN71LLxss_4575Xy0WgJ6AefMsV_Q4K0JzmiV5cUR2eYzpzNRMIlM_Y746zjsbjd0mn83NVwYoAIp31jT8B-sUuP4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419788754</pqid></control><display><type>article</type><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</creator><creatorcontrib>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</creatorcontrib><description>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1305167110</identifier><identifier>PMID: 23861489</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Amino Acid Sequence ; Animals ; Binding sites ; Binding Sites - genetics ; Biological Sciences ; Blotting, Western ; Electric current ; Electric potential ; Female ; Genetic mutation ; Humans ; Ion Channel Gating - genetics ; Ion Channel Gating - physiology ; Ion channels ; Ions ; KCNQ1 Potassium Channel - chemistry ; KCNQ1 Potassium Channel - genetics ; KCNQ1 Potassium Channel - metabolism ; Lipids ; Membrane Potentials - genetics ; Membrane Potentials - physiology ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oocytes ; Oocytes - metabolism ; Oocytes - physiology ; Patch-Clamp Techniques ; Phosphatidylinositol 4,5-Diphosphate - chemistry ; Phosphatidylinositol 4,5-Diphosphate - metabolism ; Phosphatidylinositols ; Potassium channels ; Protein Binding ; Protein Structure, Tertiary ; protein-protein interactions ; Proteins ; Sensors ; Sequence Homology, Amino Acid ; Steady state current ; Tissues ; Xenopus laevis</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (32), p.13180-13185</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 6, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</citedby><cites>FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42712863$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42712863$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23861489$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaydman, Mark A.</creatorcontrib><creatorcontrib>Silva, Jonathan R.</creatorcontrib><creatorcontrib>Delaloye, Kelli</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liang, Hongwu</creatorcontrib><creatorcontrib>Larsson, H. Peter</creatorcontrib><creatorcontrib>Shi, Jingyi</creatorcontrib><creatorcontrib>Cui, Jianmin</creatorcontrib><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Electric current</subject><subject>Electric potential</subject><subject>Female</subject><subject>Genetic mutation</subject><subject>Humans</subject><subject>Ion Channel Gating - genetics</subject><subject>Ion Channel Gating - physiology</subject><subject>Ion channels</subject><subject>Ions</subject><subject>KCNQ1 Potassium Channel - chemistry</subject><subject>KCNQ1 Potassium Channel - genetics</subject><subject>KCNQ1 Potassium Channel - metabolism</subject><subject>Lipids</subject><subject>Membrane Potentials - genetics</subject><subject>Membrane Potentials - physiology</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Oocytes - metabolism</subject><subject>Oocytes - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Phosphatidylinositol 4,5-Diphosphate - chemistry</subject><subject>Phosphatidylinositol 4,5-Diphosphate - metabolism</subject><subject>Phosphatidylinositols</subject><subject>Potassium channels</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein-protein interactions</subject><subject>Proteins</subject><subject>Sensors</subject><subject>Sequence Homology, Amino Acid</subject><subject>Steady state current</subject><subject>Tissues</subject><subject>Xenopus laevis</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUuP0zAUhS0EYkphzQqwxIZNOvfaiR-bkdCIl6jEAmZteVKn4yq1M3ZSiX-PQ0t5rFhZ1v3u8Tk-hDxHWCFIfjkEm1fIoUEhEeEBWSBorESt4SFZADBZqZrVF-RJzjsA0I2Cx-SCcSWwVnpB1p8PcoXUx0DbOxuC6zNN7n7yyVFLez_4DR0jbeM09I4eYj_araPZhezDdp4MsZBxcKHcn5JHne2ze3Y6l-Tm_btv1x-r9ZcPn67frqu20ThWKFuHqnGqQ7tRrAYFWiqUdnOrZAO8E84C11a1XdegZNq13EnB0DIF3Am-JFdH3WG63btN68KYbG-G5Pc2fTfRevP3JPg7s40Hw2UNGngReHMSSPF-cnk0e59b1_c2uDhlg-UdxEaI_0BrVKIu7nVBX_-D7uKUQvmJmSoRS7q6UJdHqk0x5-S6s28EM5dq5lLN71LLxss_4575Xy0WgJ6AefMsV_Q4K0JzmiV5cUR2eYzpzNRMIlM_Y746zjsbjd0mn83NVwYoAIp31jT8B-sUuP4</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Zaydman, Mark A.</creator><creator>Silva, Jonathan R.</creator><creator>Delaloye, Kelli</creator><creator>Li, Yang</creator><creator>Liang, Hongwu</creator><creator>Larsson, H. Peter</creator><creator>Shi, Jingyi</creator><creator>Cui, Jianmin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130806</creationdate><title>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</title><author>Zaydman, Mark A. ; Silva, Jonathan R. ; Delaloye, Kelli ; Li, Yang ; Liang, Hongwu ; Larsson, H. Peter ; Shi, Jingyi ; Cui, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-17ce185e8f1ad82408097817adb87503f6ea039a8cff51729ec3e7621a2803e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Electric current</topic><topic>Electric potential</topic><topic>Female</topic><topic>Genetic mutation</topic><topic>Humans</topic><topic>Ion Channel Gating - genetics</topic><topic>Ion Channel Gating - physiology</topic><topic>Ion channels</topic><topic>Ions</topic><topic>KCNQ1 Potassium Channel - chemistry</topic><topic>KCNQ1 Potassium Channel - genetics</topic><topic>KCNQ1 Potassium Channel - metabolism</topic><topic>Lipids</topic><topic>Membrane Potentials - genetics</topic><topic>Membrane Potentials - physiology</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Oocytes - metabolism</topic><topic>Oocytes - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Phosphatidylinositol 4,5-Diphosphate - chemistry</topic><topic>Phosphatidylinositol 4,5-Diphosphate - metabolism</topic><topic>Phosphatidylinositols</topic><topic>Potassium channels</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein-protein interactions</topic><topic>Proteins</topic><topic>Sensors</topic><topic>Sequence Homology, Amino Acid</topic><topic>Steady state current</topic><topic>Tissues</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaydman, Mark A.</creatorcontrib><creatorcontrib>Silva, Jonathan R.</creatorcontrib><creatorcontrib>Delaloye, Kelli</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Liang, Hongwu</creatorcontrib><creatorcontrib>Larsson, H. Peter</creatorcontrib><creatorcontrib>Shi, Jingyi</creatorcontrib><creatorcontrib>Cui, Jianmin</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaydman, Mark A.</au><au>Silva, Jonathan R.</au><au>Delaloye, Kelli</au><au>Li, Yang</au><au>Liang, Hongwu</au><au>Larsson, H. Peter</au><au>Shi, Jingyi</au><au>Cui, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>110</volume><issue>32</issue><spage>13180</spage><epage>13185</epage><pages>13180-13185</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein–protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP ₂). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP ₂. This result is due to loss of coupling because PIP ₂ was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP ₂-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K ⁺ channels, suggesting that lipids play an important role in coupling in many ion channels.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>23861489</pmid><doi>10.1073/pnas.1305167110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-08, Vol.110 (32), p.13180-13185
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1418648179
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Amino Acid Sequence
Animals
Binding sites
Binding Sites - genetics
Biological Sciences
Blotting, Western
Electric current
Electric potential
Female
Genetic mutation
Humans
Ion Channel Gating - genetics
Ion Channel Gating - physiology
Ion channels
Ions
KCNQ1 Potassium Channel - chemistry
KCNQ1 Potassium Channel - genetics
KCNQ1 Potassium Channel - metabolism
Lipids
Membrane Potentials - genetics
Membrane Potentials - physiology
Models, Biological
Models, Molecular
Molecular Sequence Data
Mutation
Oocytes
Oocytes - metabolism
Oocytes - physiology
Patch-Clamp Techniques
Phosphatidylinositol 4,5-Diphosphate - chemistry
Phosphatidylinositol 4,5-Diphosphate - metabolism
Phosphatidylinositols
Potassium channels
Protein Binding
Protein Structure, Tertiary
protein-protein interactions
Proteins
Sensors
Sequence Homology, Amino Acid
Steady state current
Tissues
Xenopus laevis
title Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kv7.1%20ion%20channels%20require%20a%20lipid%20to%20couple%20voltage%20sensing%20to%20pore%20opening&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zaydman,%20Mark%20A.&rft.date=2013-08-06&rft.volume=110&rft.issue=32&rft.spage=13180&rft.epage=13185&rft.pages=13180-13185&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1305167110&rft_dat=%3Cjstor_proqu%3E42712863%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419788754&rft_id=info:pmid/23861489&rft_jstor_id=42712863&rfr_iscdi=true