Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study

Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-08, Vol.29 (31), p.9770-9782
Hauptverfasser: Zhang, Jianguo, Leroy, Frédéric, Müller-Plathe, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9782
container_issue 31
container_start_page 9770
container_title Langmuir
container_volume 29
creator Zhang, Jianguo
Leroy, Frédéric
Müller-Plathe, Florian
description Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ < 90°) or hydrophobic (contact angle θ > 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.
doi_str_mv 10.1021/la401655h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418364885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418364885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgipvTg_-A9CLooZo0SZt6G3M6Yephisfylh_Y0TY1aYX990Y358XTg8fnfR98ETol-IrghFxXwDBJOX_fQ0PCExxzkWT7aIgzRuOMpXSAjrxfYYxzyvJDNEioYCJcDNHb9BNa66ArbRNZEz1BY5WzbaU7H4XVTEOnVbTol74LSvubaBw92krLvgIX3a4bqEvpo0VZh8VPyqLr1foYHRiovD7ZzhF6vZu-TGbx_Pn-YTKex8AI6WLFslQmWOCcUBCgjYEMG2KEIDQ3iTSgU6wxZTKYTCvODOU550oJiQlkdIQuNrmtsx-99l1Rl17qqoJG294XhBFBUyYED_RyQ6Wz3jttitaVNbh1QXDx3WOx6zHYs21sv6y12snf4gI43wLwEirjoJGl_3NZylgaXu8cSF-sbO-a0MY_D78AvjqGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418364885</pqid></control><display><type>article</type><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</creator><creatorcontrib>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</creatorcontrib><description>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ &lt; 90°) or hydrophobic (contact angle θ &gt; 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la401655h</identifier><identifier>PMID: 23848165</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrophobic and Hydrophilic Interactions ; Molecular Dynamics Simulation ; Nanoparticles - chemistry ; Particle Size ; Solid-liquid interface ; Surface physical chemistry ; Surface Properties ; Temperature ; Volatilization</subject><ispartof>Langmuir, 2013-08, Vol.29 (31), p.9770-9782</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</citedby><cites>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la401655h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la401655h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27644618$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23848165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jianguo</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ &lt; 90°) or hydrophobic (contact angle θ &gt; 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Volatilization</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M9LwzAUB_AgipvTg_-A9CLooZo0SZt6G3M6Yephisfylh_Y0TY1aYX990Y358XTg8fnfR98ETol-IrghFxXwDBJOX_fQ0PCExxzkWT7aIgzRuOMpXSAjrxfYYxzyvJDNEioYCJcDNHb9BNa66ArbRNZEz1BY5WzbaU7H4XVTEOnVbTol74LSvubaBw92krLvgIX3a4bqEvpo0VZh8VPyqLr1foYHRiovD7ZzhF6vZu-TGbx_Pn-YTKex8AI6WLFslQmWOCcUBCgjYEMG2KEIDQ3iTSgU6wxZTKYTCvODOU550oJiQlkdIQuNrmtsx-99l1Rl17qqoJG294XhBFBUyYED_RyQ6Wz3jttitaVNbh1QXDx3WOx6zHYs21sv6y12snf4gI43wLwEirjoJGl_3NZylgaXu8cSF-sbO-a0MY_D78AvjqGLg</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Zhang, Jianguo</creator><creator>Leroy, Frédéric</creator><creator>Müller-Plathe, Florian</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130806</creationdate><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><author>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianguo</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianguo</au><au>Leroy, Frédéric</au><au>Müller-Plathe, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>29</volume><issue>31</issue><spage>9770</spage><epage>9782</epage><pages>9770-9782</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ &lt; 90°) or hydrophobic (contact angle θ &gt; 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23848165</pmid><doi>10.1021/la401655h</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-08, Vol.29 (31), p.9770-9782
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1418364885
source MEDLINE; ACS Publications
subjects Chemistry
Exact sciences and technology
General and physical chemistry
Hydrophobic and Hydrophilic Interactions
Molecular Dynamics Simulation
Nanoparticles - chemistry
Particle Size
Solid-liquid interface
Surface physical chemistry
Surface Properties
Temperature
Volatilization
title Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20of%20Nanodroplets%20on%20Heated%20Substrates:%20A%20Molecular%20Dynamics%20Simulation%20Study&rft.jtitle=Langmuir&rft.au=Zhang,%20Jianguo&rft.date=2013-08-06&rft.volume=29&rft.issue=31&rft.spage=9770&rft.epage=9782&rft.pages=9770-9782&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la401655h&rft_dat=%3Cproquest_cross%3E1418364885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418364885&rft_id=info:pmid/23848165&rfr_iscdi=true