Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study
Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-08, Vol.29 (31), p.9770-9782 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9782 |
---|---|
container_issue | 31 |
container_start_page | 9770 |
container_title | Langmuir |
container_volume | 29 |
creator | Zhang, Jianguo Leroy, Frédéric Müller-Plathe, Florian |
description | Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ < 90°) or hydrophobic (contact angle θ > 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike. |
doi_str_mv | 10.1021/la401655h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418364885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418364885</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</originalsourceid><addsrcrecordid>eNpt0M9LwzAUB_AgipvTg_-A9CLooZo0SZt6G3M6Yephisfylh_Y0TY1aYX990Y358XTg8fnfR98ETol-IrghFxXwDBJOX_fQ0PCExxzkWT7aIgzRuOMpXSAjrxfYYxzyvJDNEioYCJcDNHb9BNa66ArbRNZEz1BY5WzbaU7H4XVTEOnVbTol74LSvubaBw92krLvgIX3a4bqEvpo0VZh8VPyqLr1foYHRiovD7ZzhF6vZu-TGbx_Pn-YTKex8AI6WLFslQmWOCcUBCgjYEMG2KEIDQ3iTSgU6wxZTKYTCvODOU550oJiQlkdIQuNrmtsx-99l1Rl17qqoJG294XhBFBUyYED_RyQ6Wz3jttitaVNbh1QXDx3WOx6zHYs21sv6y12snf4gI43wLwEirjoJGl_3NZylgaXu8cSF-sbO-a0MY_D78AvjqGLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418364885</pqid></control><display><type>article</type><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</creator><creatorcontrib>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</creatorcontrib><description>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ < 90°) or hydrophobic (contact angle θ > 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la401655h</identifier><identifier>PMID: 23848165</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrophobic and Hydrophilic Interactions ; Molecular Dynamics Simulation ; Nanoparticles - chemistry ; Particle Size ; Solid-liquid interface ; Surface physical chemistry ; Surface Properties ; Temperature ; Volatilization</subject><ispartof>Langmuir, 2013-08, Vol.29 (31), p.9770-9782</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</citedby><cites>FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la401655h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la401655h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27644618$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23848165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jianguo</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ < 90°) or hydrophobic (contact angle θ > 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Solid-liquid interface</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Volatilization</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M9LwzAUB_AgipvTg_-A9CLooZo0SZt6G3M6Yephisfylh_Y0TY1aYX990Y358XTg8fnfR98ETol-IrghFxXwDBJOX_fQ0PCExxzkWT7aIgzRuOMpXSAjrxfYYxzyvJDNEioYCJcDNHb9BNa66ArbRNZEz1BY5WzbaU7H4XVTEOnVbTol74LSvubaBw92krLvgIX3a4bqEvpo0VZh8VPyqLr1foYHRiovD7ZzhF6vZu-TGbx_Pn-YTKex8AI6WLFslQmWOCcUBCgjYEMG2KEIDQ3iTSgU6wxZTKYTCvODOU550oJiQlkdIQuNrmtsx-99l1Rl17qqoJG294XhBFBUyYED_RyQ6Wz3jttitaVNbh1QXDx3WOx6zHYs21sv6y12snf4gI43wLwEirjoJGl_3NZylgaXu8cSF-sbO-a0MY_D78AvjqGLg</recordid><startdate>20130806</startdate><enddate>20130806</enddate><creator>Zhang, Jianguo</creator><creator>Leroy, Frédéric</creator><creator>Müller-Plathe, Florian</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130806</creationdate><title>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</title><author>Zhang, Jianguo ; Leroy, Frédéric ; Müller-Plathe, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-d476c2080913a8aeffa70f1f88139f2cfae60e034c0807ed54f35955dd8c01a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Solid-liquid interface</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Volatilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianguo</creatorcontrib><creatorcontrib>Leroy, Frédéric</creatorcontrib><creatorcontrib>Müller-Plathe, Florian</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jianguo</au><au>Leroy, Frédéric</au><au>Müller-Plathe, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-08-06</date><risdate>2013</risdate><volume>29</volume><issue>31</issue><spage>9770</spage><epage>9782</epage><pages>9770-9782</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Molecular dynamics simulations of Lennard-Jones particles have been performed to study the evaporation behavior of nanodroplets on heated substrates. The influence of the liquid–substrate interaction strength on the evaporation properties was addressed. Our results show that, during the temperature-raising evaporation, the gas is always hotter than the droplet. In contrast to the usual experimental conditions, the droplet sizes in our simulations are in the nanometer scale range and the substrates are ideally smooth and chemically homogeneous. As a result, no pinning was observed in our simulations for substrates denoted either hydrophilic (contact angle θ < 90°) or hydrophobic (contact angle θ > 90°). The evaporative mass flux is stronger with increasing hydrophilicity of the substrate because the heat transfer from the substrate to the droplet is more efficient for stronger attraction between the solid and the droplet. Evaporation and heat transfer to the gas phase occur preferentially in the vicinity of the three-phase contact line in the hydrophilic system. However, in the case of a hydrophobic substrate, there is no preferential location for mass and heat fluxes. During the whole evaporation process, no pure behavior according to either the constant-angle or the constant-radius model was found; both the contact angle and contact radius decrease for the droplets on hydrophilic and hydrophobic substrates alike.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23848165</pmid><doi>10.1021/la401655h</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-08, Vol.29 (31), p.9770-9782 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418364885 |
source | MEDLINE; ACS Publications |
subjects | Chemistry Exact sciences and technology General and physical chemistry Hydrophobic and Hydrophilic Interactions Molecular Dynamics Simulation Nanoparticles - chemistry Particle Size Solid-liquid interface Surface physical chemistry Surface Properties Temperature Volatilization |
title | Evaporation of Nanodroplets on Heated Substrates: A Molecular Dynamics Simulation Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A38%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20of%20Nanodroplets%20on%20Heated%20Substrates:%20A%20Molecular%20Dynamics%20Simulation%20Study&rft.jtitle=Langmuir&rft.au=Zhang,%20Jianguo&rft.date=2013-08-06&rft.volume=29&rft.issue=31&rft.spage=9770&rft.epage=9782&rft.pages=9770-9782&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la401655h&rft_dat=%3Cproquest_cross%3E1418364885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418364885&rft_id=info:pmid/23848165&rfr_iscdi=true |