Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels
[Display omitted] Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hy...
Gespeichert in:
Veröffentlicht in: | European journal of pharmaceutical sciences 2013-09, Vol.50 (1), p.69-77 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | European journal of pharmaceutical sciences |
container_volume | 50 |
creator | Valo, Hanna Arola, Suvi Laaksonen, Päivi Torkkeli, Mika Peltonen, Leena Linder, Markus B. Serimaa, Ritva Kuga, Shigenori Hirvonen, Jouni Laaksonen, Timo |
description | [Display omitted]
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery. |
doi_str_mv | 10.1016/j.ejps.2013.02.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418147521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928098713000948</els_id><sourcerecordid>1418147521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b2e41745c019cd34e94d2cab5f89d3a3352796af70f3a9c9798cdffd54e834953</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gAuZpZupeU0zATfiGwpudOUiZJKbkpKZ1GRG8N87tdWlcOBy4TuHew9C5wTPCSaLq_Uc1ps8p5iwOaaj2AGaklrIEguKD9EUS1qXWNZigk5yXmOMF7XAx2hCWTUunEzR-10aVkWCADpD4VJsi053caNT702AXEDbgLVgC98VLg6psN45SND1P6DzTfIh6FQYCGEIcUzRkOIKQj5FR06HDGf7OUNvD_evt0_l8uXx-fZmWRpOaV82FDgRvDKYSGMZB8ktNbqpXC0t04xVVMiFdgI7pqWRQtbGOmcrDjXjsmIzdLnL3aT4MUDuVevz9hzdQRyyIpzUhIuKkhGlO9SkmHMCpzbJtzp9KYLVtlS1VttS1bZUhekoNpou9vlD04L9s_y2OALXO2B8Gj49JJWNh86A9QlMr2z0_-V_A0lRiYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418147521</pqid></control><display><type>article</type><title>Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Valo, Hanna ; Arola, Suvi ; Laaksonen, Päivi ; Torkkeli, Mika ; Peltonen, Leena ; Linder, Markus B. ; Serimaa, Ritva ; Kuga, Shigenori ; Hirvonen, Jouni ; Laaksonen, Timo</creator><creatorcontrib>Valo, Hanna ; Arola, Suvi ; Laaksonen, Päivi ; Torkkeli, Mika ; Peltonen, Leena ; Linder, Markus B. ; Serimaa, Ritva ; Kuga, Shigenori ; Hirvonen, Jouni ; Laaksonen, Timo</creatorcontrib><description>[Display omitted]
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery.</description><identifier>ISSN: 0928-0987</identifier><identifier>EISSN: 1879-0720</identifier><identifier>DOI: 10.1016/j.ejps.2013.02.023</identifier><identifier>PMID: 23500041</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerogel ; Bacterial cellulose ; Beclomethasone - administration & dosage ; Beclomethasone - chemistry ; Calorimetry, Differential Scanning ; Cellulose - chemistry ; Drug Carriers - chemistry ; Drug Compounding ; Drug release ; Freeze Drying ; Hydrogels - chemistry ; Hydrophobin ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Nanofibers - chemistry ; Nanofibrillar cellulose ; Nanoparticles ; Nanoparticles - chemistry ; Particle Size ; Powder Diffraction ; Solubility ; Spectroscopy, Fourier Transform Infrared ; Surface Properties</subject><ispartof>European journal of pharmaceutical sciences, 2013-09, Vol.50 (1), p.69-77</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright © 2013 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b2e41745c019cd34e94d2cab5f89d3a3352796af70f3a9c9798cdffd54e834953</citedby><cites>FETCH-LOGICAL-c422t-b2e41745c019cd34e94d2cab5f89d3a3352796af70f3a9c9798cdffd54e834953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejps.2013.02.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23500041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valo, Hanna</creatorcontrib><creatorcontrib>Arola, Suvi</creatorcontrib><creatorcontrib>Laaksonen, Päivi</creatorcontrib><creatorcontrib>Torkkeli, Mika</creatorcontrib><creatorcontrib>Peltonen, Leena</creatorcontrib><creatorcontrib>Linder, Markus B.</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Kuga, Shigenori</creatorcontrib><creatorcontrib>Hirvonen, Jouni</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><title>Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels</title><title>European journal of pharmaceutical sciences</title><addtitle>Eur J Pharm Sci</addtitle><description>[Display omitted]
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery.</description><subject>Aerogel</subject><subject>Bacterial cellulose</subject><subject>Beclomethasone - administration & dosage</subject><subject>Beclomethasone - chemistry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cellulose - chemistry</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Compounding</subject><subject>Drug release</subject><subject>Freeze Drying</subject><subject>Hydrogels - chemistry</subject><subject>Hydrophobin</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibrillar cellulose</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Particle Size</subject><subject>Powder Diffraction</subject><subject>Solubility</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><issn>0928-0987</issn><issn>1879-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlb_gAuZpZupeU0zATfiGwpudOUiZJKbkpKZ1GRG8N87tdWlcOBy4TuHew9C5wTPCSaLq_Uc1ps8p5iwOaaj2AGaklrIEguKD9EUS1qXWNZigk5yXmOMF7XAx2hCWTUunEzR-10aVkWCADpD4VJsi053caNT702AXEDbgLVgC98VLg6psN45SND1P6DzTfIh6FQYCGEIcUzRkOIKQj5FR06HDGf7OUNvD_evt0_l8uXx-fZmWRpOaV82FDgRvDKYSGMZB8ktNbqpXC0t04xVVMiFdgI7pqWRQtbGOmcrDjXjsmIzdLnL3aT4MUDuVevz9hzdQRyyIpzUhIuKkhGlO9SkmHMCpzbJtzp9KYLVtlS1VttS1bZUhekoNpou9vlD04L9s_y2OALXO2B8Gj49JJWNh86A9QlMr2z0_-V_A0lRiYw</recordid><startdate>20130927</startdate><enddate>20130927</enddate><creator>Valo, Hanna</creator><creator>Arola, Suvi</creator><creator>Laaksonen, Päivi</creator><creator>Torkkeli, Mika</creator><creator>Peltonen, Leena</creator><creator>Linder, Markus B.</creator><creator>Serimaa, Ritva</creator><creator>Kuga, Shigenori</creator><creator>Hirvonen, Jouni</creator><creator>Laaksonen, Timo</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130927</creationdate><title>Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels</title><author>Valo, Hanna ; Arola, Suvi ; Laaksonen, Päivi ; Torkkeli, Mika ; Peltonen, Leena ; Linder, Markus B. ; Serimaa, Ritva ; Kuga, Shigenori ; Hirvonen, Jouni ; Laaksonen, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b2e41745c019cd34e94d2cab5f89d3a3352796af70f3a9c9798cdffd54e834953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerogel</topic><topic>Bacterial cellulose</topic><topic>Beclomethasone - administration & dosage</topic><topic>Beclomethasone - chemistry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cellulose - chemistry</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Compounding</topic><topic>Drug release</topic><topic>Freeze Drying</topic><topic>Hydrogels - chemistry</topic><topic>Hydrophobin</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibrillar cellulose</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Particle Size</topic><topic>Powder Diffraction</topic><topic>Solubility</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valo, Hanna</creatorcontrib><creatorcontrib>Arola, Suvi</creatorcontrib><creatorcontrib>Laaksonen, Päivi</creatorcontrib><creatorcontrib>Torkkeli, Mika</creatorcontrib><creatorcontrib>Peltonen, Leena</creatorcontrib><creatorcontrib>Linder, Markus B.</creatorcontrib><creatorcontrib>Serimaa, Ritva</creatorcontrib><creatorcontrib>Kuga, Shigenori</creatorcontrib><creatorcontrib>Hirvonen, Jouni</creatorcontrib><creatorcontrib>Laaksonen, Timo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valo, Hanna</au><au>Arola, Suvi</au><au>Laaksonen, Päivi</au><au>Torkkeli, Mika</au><au>Peltonen, Leena</au><au>Linder, Markus B.</au><au>Serimaa, Ritva</au><au>Kuga, Shigenori</au><au>Hirvonen, Jouni</au><au>Laaksonen, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels</atitle><jtitle>European journal of pharmaceutical sciences</jtitle><addtitle>Eur J Pharm Sci</addtitle><date>2013-09-27</date><risdate>2013</risdate><volume>50</volume><issue>1</issue><spage>69</spage><epage>77</epage><pages>69-77</pages><issn>0928-0987</issn><eissn>1879-0720</eissn><abstract>[Display omitted]
Highly porous nanocellulose aerogels prepared by freeze-drying from various nanofibrillar cellulose (NFC) hydrogels are introduced as nanoparticle reservoirs for oral drug delivery systems. Here we show that beclomethasone dipropionate (BDP) nanoparticles coated with amphiphilic hydrophobin proteins can be well integrated into the NFC aerogels. NFCs from four different origins are introduced and compared to microcrystalline cellulose (MCC). The nanocellulose aerogel scaffolds made from red pepper (RC) and MCC release the drug immediately, while bacterial cellulose (BC), quince seed (QC) and TEMPO-oxidized birch cellulose-based (TC) aerogels show sustained drug release. Since the release of the drug is controlled by the structure and interactions between the nanoparticles and the cellulose matrix, modulation of the matrix formers enable a control of the drug release rate. These nanocomposite structures can be very useful in many pharmaceutical nanoparticle applications and open up new possibilities as carriers for controlled drug delivery.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23500041</pmid><doi>10.1016/j.ejps.2013.02.023</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0928-0987 |
ispartof | European journal of pharmaceutical sciences, 2013-09, Vol.50 (1), p.69-77 |
issn | 0928-0987 1879-0720 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418147521 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Aerogel Bacterial cellulose Beclomethasone - administration & dosage Beclomethasone - chemistry Calorimetry, Differential Scanning Cellulose - chemistry Drug Carriers - chemistry Drug Compounding Drug release Freeze Drying Hydrogels - chemistry Hydrophobin Microscopy, Atomic Force Microscopy, Electron, Scanning Nanofibers - chemistry Nanofibrillar cellulose Nanoparticles Nanoparticles - chemistry Particle Size Powder Diffraction Solubility Spectroscopy, Fourier Transform Infrared Surface Properties |
title | Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20release%20from%20nanoparticles%20embedded%20in%20four%20different%20nanofibrillar%20cellulose%20aerogels&rft.jtitle=European%20journal%20of%20pharmaceutical%20sciences&rft.au=Valo,%20Hanna&rft.date=2013-09-27&rft.volume=50&rft.issue=1&rft.spage=69&rft.epage=77&rft.pages=69-77&rft.issn=0928-0987&rft.eissn=1879-0720&rft_id=info:doi/10.1016/j.ejps.2013.02.023&rft_dat=%3Cproquest_cross%3E1418147521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418147521&rft_id=info:pmid/23500041&rft_els_id=S0928098713000948&rfr_iscdi=true |