Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L

Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2013-08, Vol.126 (Pt 15), p.3462-3474
Hauptverfasser: van der Kant, Rik, Fish, Alexander, Janssen, Lennert, Janssen, Hans, Krom, Sabine, Ho, Nataschja, Brummelkamp, Thijn, Carette, Jan, Rocha, Nuno, Neefjes, Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3474
container_issue Pt 15
container_start_page 3462
container_title Journal of cell science
container_volume 126
creator van der Kant, Rik
Fish, Alexander
Janssen, Lennert
Janssen, Hans
Krom, Sabine
Ho, Nataschja
Brummelkamp, Thijn
Carette, Jan
Rocha, Nuno
Neefjes, Jacques
description Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.
doi_str_mv 10.1242/jcs.129270
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418145251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418145251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-43658e9ae468d54effbc0a26428678006d43badb9a221749f9606861e09c27eb3</originalsourceid><addsrcrecordid>eNo9kN1LwzAUxYMobk5f_AMkjyJU89WkeRTxY1DYGPpc0vbWbbRNTdKH_fdmdPp0D-f-7uVwELql5JEywZ72lY9CM0XO0JwKpRJNuTpHc0IYTXTK-Qxdeb8nhCim1SWaMX4UnM3RkJsAGPraetuZFgdnej9YF7DpaxwgbMHt-m9sHODKjkMLNR6crcB78NHpg7Pt0SwPeLPM19PZNsJb24IPENfYQ--tw6vNmubX6KIxrYeb01ygr7fXz5ePJF-9L1-e86TimQ6J4DLNQBsQMqtTAU1TVsQwKVgmVUaIrAUvTV1qwxhVQjdaEplJCkRXTEHJF-h--hvT_owxSdHtfAVta3qwoy-ooBkVKUtpRB8mtHLWewdNMbhdZ9yhoKQ4NlzEhoup4Qjfnf6OZQf1P_pXKf8FB-12_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418145251</pqid></control><display><type>article</type><title>Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Company of Biologists</source><creator>van der Kant, Rik ; Fish, Alexander ; Janssen, Lennert ; Janssen, Hans ; Krom, Sabine ; Ho, Nataschja ; Brummelkamp, Thijn ; Carette, Jan ; Rocha, Nuno ; Neefjes, Jacques</creator><creatorcontrib>van der Kant, Rik ; Fish, Alexander ; Janssen, Lennert ; Janssen, Hans ; Krom, Sabine ; Ho, Nataschja ; Brummelkamp, Thijn ; Carette, Jan ; Rocha, Nuno ; Neefjes, Jacques</creatorcontrib><description>Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.</description><identifier>ISSN: 0021-9533</identifier><identifier>EISSN: 1477-9137</identifier><identifier>DOI: 10.1242/jcs.129270</identifier><identifier>PMID: 23729732</identifier><language>eng</language><publisher>England</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adaptor Proteins, Signal Transducing - metabolism ; Cell Line, Tumor ; Cholesterol - metabolism ; Dyneins - genetics ; Dyneins - metabolism ; Endosomes - metabolism ; Humans ; Melanoma - genetics ; Melanoma - metabolism ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - metabolism ; Receptors, Steroid - genetics ; Receptors, Steroid - metabolism ; Transport Vesicles - metabolism</subject><ispartof>Journal of cell science, 2013-08, Vol.126 (Pt 15), p.3462-3474</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-43658e9ae468d54effbc0a26428678006d43badb9a221749f9606861e09c27eb3</citedby><cites>FETCH-LOGICAL-c389t-43658e9ae468d54effbc0a26428678006d43badb9a221749f9606861e09c27eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3665,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23729732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Kant, Rik</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Janssen, Lennert</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><creatorcontrib>Krom, Sabine</creatorcontrib><creatorcontrib>Ho, Nataschja</creatorcontrib><creatorcontrib>Brummelkamp, Thijn</creatorcontrib><creatorcontrib>Carette, Jan</creatorcontrib><creatorcontrib>Rocha, Nuno</creatorcontrib><creatorcontrib>Neefjes, Jacques</creatorcontrib><title>Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L</title><title>Journal of cell science</title><addtitle>J Cell Sci</addtitle><description>Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adaptor Proteins, Signal Transducing - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cholesterol - metabolism</subject><subject>Dyneins - genetics</subject><subject>Dyneins - metabolism</subject><subject>Endosomes - metabolism</subject><subject>Humans</subject><subject>Melanoma - genetics</subject><subject>Melanoma - metabolism</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - metabolism</subject><subject>Receptors, Steroid - genetics</subject><subject>Receptors, Steroid - metabolism</subject><subject>Transport Vesicles - metabolism</subject><issn>0021-9533</issn><issn>1477-9137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kN1LwzAUxYMobk5f_AMkjyJU89WkeRTxY1DYGPpc0vbWbbRNTdKH_fdmdPp0D-f-7uVwELql5JEywZ72lY9CM0XO0JwKpRJNuTpHc0IYTXTK-Qxdeb8nhCim1SWaMX4UnM3RkJsAGPraetuZFgdnej9YF7DpaxwgbMHt-m9sHODKjkMLNR6crcB78NHpg7Pt0SwPeLPM19PZNsJb24IPENfYQ--tw6vNmubX6KIxrYeb01ygr7fXz5ePJF-9L1-e86TimQ6J4DLNQBsQMqtTAU1TVsQwKVgmVUaIrAUvTV1qwxhVQjdaEplJCkRXTEHJF-h--hvT_owxSdHtfAVta3qwoy-ooBkVKUtpRB8mtHLWewdNMbhdZ9yhoKQ4NlzEhoup4Qjfnf6OZQf1P_pXKf8FB-12_Q</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>van der Kant, Rik</creator><creator>Fish, Alexander</creator><creator>Janssen, Lennert</creator><creator>Janssen, Hans</creator><creator>Krom, Sabine</creator><creator>Ho, Nataschja</creator><creator>Brummelkamp, Thijn</creator><creator>Carette, Jan</creator><creator>Rocha, Nuno</creator><creator>Neefjes, Jacques</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L</title><author>van der Kant, Rik ; Fish, Alexander ; Janssen, Lennert ; Janssen, Hans ; Krom, Sabine ; Ho, Nataschja ; Brummelkamp, Thijn ; Carette, Jan ; Rocha, Nuno ; Neefjes, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-43658e9ae468d54effbc0a26428678006d43badb9a221749f9606861e09c27eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adaptor Proteins, Signal Transducing - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cholesterol - metabolism</topic><topic>Dyneins - genetics</topic><topic>Dyneins - metabolism</topic><topic>Endosomes - metabolism</topic><topic>Humans</topic><topic>Melanoma - genetics</topic><topic>Melanoma - metabolism</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - metabolism</topic><topic>Receptors, Steroid - genetics</topic><topic>Receptors, Steroid - metabolism</topic><topic>Transport Vesicles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Kant, Rik</creatorcontrib><creatorcontrib>Fish, Alexander</creatorcontrib><creatorcontrib>Janssen, Lennert</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><creatorcontrib>Krom, Sabine</creatorcontrib><creatorcontrib>Ho, Nataschja</creatorcontrib><creatorcontrib>Brummelkamp, Thijn</creatorcontrib><creatorcontrib>Carette, Jan</creatorcontrib><creatorcontrib>Rocha, Nuno</creatorcontrib><creatorcontrib>Neefjes, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cell science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Kant, Rik</au><au>Fish, Alexander</au><au>Janssen, Lennert</au><au>Janssen, Hans</au><au>Krom, Sabine</au><au>Ho, Nataschja</au><au>Brummelkamp, Thijn</au><au>Carette, Jan</au><au>Rocha, Nuno</au><au>Neefjes, Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L</atitle><jtitle>Journal of cell science</jtitle><addtitle>J Cell Sci</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>126</volume><issue>Pt 15</issue><spage>3462</spage><epage>3474</epage><pages>3462-3474</pages><issn>0021-9533</issn><eissn>1477-9137</eissn><abstract>Late endosomes and lysosomes are dynamic organelles that constantly move and fuse to acquire cargo from early endosomes, phagosomes and autophagosome. Defects in lysosomal dynamics cause severe neurodegenerative and developmental diseases, such as Niemann-Pick type C disease and ARC syndrome, yet little is known about the regulation of late endosomal fusion in a mammalian system. Mammalian endosomes destined for fusion need to be transported over very long distances before they tether to initiate contact. Here, we describe that lysosomal tethering and transport are combined processes co-regulated by one multi-protein complex: RAB7-RILP-ORP1L. We show that RILP directly and concomitantly binds the tethering HOPS complex and the p150(Glued) subunit of the dynein motor. ORP1L then functions as a cholesterol-sensing switch controlling RILP-HOPS-p150(Glued) interactions. We show that RILP and ORP1L control Ebola virus infection, a process dependent on late endosomal fusion. By combining recruitment and regulation of both the dynein motor and HOPS complex into a single multiprotein complex, the RAB7-RILP-ORP1L complex efficiently couples and regulates the timing of microtubule minus-end transport and fusion, two major events in endosomal biology.</abstract><cop>England</cop><pmid>23729732</pmid><doi>10.1242/jcs.129270</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9533
ispartof Journal of cell science, 2013-08, Vol.126 (Pt 15), p.3462-3474
issn 0021-9533
1477-9137
language eng
recordid cdi_proquest_miscellaneous_1418145251
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Company of Biologists
subjects Adaptor Proteins, Signal Transducing - genetics
Adaptor Proteins, Signal Transducing - metabolism
Cell Line, Tumor
Cholesterol - metabolism
Dyneins - genetics
Dyneins - metabolism
Endosomes - metabolism
Humans
Melanoma - genetics
Melanoma - metabolism
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - metabolism
Receptors, Steroid - genetics
Receptors, Steroid - metabolism
Transport Vesicles - metabolism
title Late endosomal transport and tethering are coupled processes controlled by RILP and the cholesterol sensor ORP1L
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Late%20endosomal%20transport%20and%20tethering%20are%20coupled%20processes%20controlled%20by%20RILP%20and%20the%20cholesterol%20sensor%20ORP1L&rft.jtitle=Journal%20of%20cell%20science&rft.au=van%20der%20Kant,%20Rik&rft.date=2013-08-01&rft.volume=126&rft.issue=Pt%2015&rft.spage=3462&rft.epage=3474&rft.pages=3462-3474&rft.issn=0021-9533&rft.eissn=1477-9137&rft_id=info:doi/10.1242/jcs.129270&rft_dat=%3Cproquest_cross%3E1418145251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418145251&rft_id=info:pmid/23729732&rfr_iscdi=true