Noncoding RNAs prevent spreading of a repressive histone mark

HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2013-08, Vol.20 (8), p.994-1000
Hauptverfasser: Keller, Claudia, Kulasegaran-Shylini, Raghavendran, Shimada, Yukiko, Hotz, Hans-Rudolf, Bühler, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1000
container_issue 8
container_start_page 994
container_title Nature structural & molecular biology
container_volume 20
creator Keller, Claudia
Kulasegaran-Shylini, Raghavendran
Shimada, Yukiko
Hotz, Hans-Rudolf
Bühler, Marc
description HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1. Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of Schizosaccharomyces pombe chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.
doi_str_mv 10.1038/nsmb.2619
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418144799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341369030</galeid><sourcerecordid>A341369030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EgrIceAEUiQsgpXhN4gOHqmKTUJFYzpaTTEpKEhc7qeDtcVjKKh88M_pm_RHaJXhIMEuOG1enQxoRuYIGRHARSpmI1aUt2QbadG6GMRUiZutog7IkplKSATqZmCYzedlMg5vJyAVzCwto2sB5Q7-FTRHowIL3nSsXEDyUrjUNBLW2j9tordCVg52Pfwvdn53ejS_Cq-vzy_HoKsw4l20Yx75XjiXWkSA8FUJQkLmUAjORElkUnEqa0iICThgQHCU5lyQBoRMsmYjYFjp4rzu35qkD16q6dBlUlW7AdE4RThLCuW_j0f1f6Mx0tvHT9VQsYoop_qKmugJVNoVprc76omrE_BCRxKynhv9Q_uVQl5k_QlH6-I-Ewx8JnmnhuZ3qzjl1eXvzL5tZ45yFQs1t6Y_6oghWvayql1X1snp272OpLq0hX5KfOnrg6B3wunnRwH7b-k-1V42dpkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417572020</pqid></control><display><type>article</type><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</creator><creatorcontrib>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</creatorcontrib><description>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1. Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of Schizosaccharomyces pombe chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2619</identifier><identifier>PMID: 23872991</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/100 ; 631/337/100/2285 ; 631/337/384 ; 631/337/384/2568 ; 631/337/384/521 ; Argonaute Proteins - metabolism ; Base Sequence ; Biochemistry ; Biological Microscopy ; Blotting, Northern ; Blotting, Western ; Cell Cycle Proteins - metabolism ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone - metabolism ; Encroachment ; Endoribonucleases - metabolism ; Euchromatin - metabolism ; Genetic aspects ; Genetic transcription ; Genomes ; Histones - metabolism ; Life Sciences ; Membrane Biology ; Methylation ; Methyltransferases - metabolism ; Microbial genetics ; Molecular biology ; Molecular Sequence Data ; Physiological aspects ; Protein Structure ; Protein Structure, Tertiary ; Real-Time Polymerase Chain Reaction ; RNA sequencing ; RNA, Long Noncoding - metabolism ; RNA-Induced Silencing Complex - metabolism ; RNA-protein interactions ; Saccharomyces ; Schizosaccharomyces pombe Proteins - metabolism ; Sequence Analysis, DNA</subject><ispartof>Nature structural &amp; molecular biology, 2013-08, Vol.20 (8), p.994-1000</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</citedby><cites>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23872991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Claudia</creatorcontrib><creatorcontrib>Kulasegaran-Shylini, Raghavendran</creatorcontrib><creatorcontrib>Shimada, Yukiko</creatorcontrib><creatorcontrib>Hotz, Hans-Rudolf</creatorcontrib><creatorcontrib>Bühler, Marc</creatorcontrib><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1. Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of Schizosaccharomyces pombe chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</description><subject>631/337/100</subject><subject>631/337/100/2285</subject><subject>631/337/384</subject><subject>631/337/384/2568</subject><subject>631/337/384/521</subject><subject>Argonaute Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Encroachment</subject><subject>Endoribonucleases - metabolism</subject><subject>Euchromatin - metabolism</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Methylation</subject><subject>Methyltransferases - metabolism</subject><subject>Microbial genetics</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Physiological aspects</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RNA sequencing</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-Induced Silencing Complex - metabolism</subject><subject>RNA-protein interactions</subject><subject>Saccharomyces</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Sequence Analysis, DNA</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkclOwzAQhi0EgrIceAEUiQsgpXhN4gOHqmKTUJFYzpaTTEpKEhc7qeDtcVjKKh88M_pm_RHaJXhIMEuOG1enQxoRuYIGRHARSpmI1aUt2QbadG6GMRUiZutog7IkplKSATqZmCYzedlMg5vJyAVzCwto2sB5Q7-FTRHowIL3nSsXEDyUrjUNBLW2j9tordCVg52Pfwvdn53ejS_Cq-vzy_HoKsw4l20Yx75XjiXWkSA8FUJQkLmUAjORElkUnEqa0iICThgQHCU5lyQBoRMsmYjYFjp4rzu35qkD16q6dBlUlW7AdE4RThLCuW_j0f1f6Mx0tvHT9VQsYoop_qKmugJVNoVprc76omrE_BCRxKynhv9Q_uVQl5k_QlH6-I-Ewx8JnmnhuZ3qzjl1eXvzL5tZ45yFQs1t6Y_6oghWvayql1X1snp272OpLq0hX5KfOnrg6B3wunnRwH7b-k-1V42dpkE</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Keller, Claudia</creator><creator>Kulasegaran-Shylini, Raghavendran</creator><creator>Shimada, Yukiko</creator><creator>Hotz, Hans-Rudolf</creator><creator>Bühler, Marc</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><author>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337/100</topic><topic>631/337/100/2285</topic><topic>631/337/384</topic><topic>631/337/384/2568</topic><topic>631/337/384/521</topic><topic>Argonaute Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Encroachment</topic><topic>Endoribonucleases - metabolism</topic><topic>Euchromatin - metabolism</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Methylation</topic><topic>Methyltransferases - metabolism</topic><topic>Microbial genetics</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Physiological aspects</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RNA sequencing</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-Induced Silencing Complex - metabolism</topic><topic>RNA-protein interactions</topic><topic>Saccharomyces</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Claudia</creatorcontrib><creatorcontrib>Kulasegaran-Shylini, Raghavendran</creatorcontrib><creatorcontrib>Shimada, Yukiko</creatorcontrib><creatorcontrib>Hotz, Hans-Rudolf</creatorcontrib><creatorcontrib>Bühler, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Claudia</au><au>Kulasegaran-Shylini, Raghavendran</au><au>Shimada, Yukiko</au><au>Hotz, Hans-Rudolf</au><au>Bühler, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncoding RNAs prevent spreading of a repressive histone mark</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>20</volume><issue>8</issue><spage>994</spage><epage>1000</epage><pages>994-1000</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1. Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of Schizosaccharomyces pombe chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23872991</pmid><doi>10.1038/nsmb.2619</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2013-08, Vol.20 (8), p.994-1000
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_1418144799
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 631/337/100
631/337/100/2285
631/337/384
631/337/384/2568
631/337/384/521
Argonaute Proteins - metabolism
Base Sequence
Biochemistry
Biological Microscopy
Blotting, Northern
Blotting, Western
Cell Cycle Proteins - metabolism
Chromatin Immunoprecipitation
Chromosomal Proteins, Non-Histone - metabolism
Encroachment
Endoribonucleases - metabolism
Euchromatin - metabolism
Genetic aspects
Genetic transcription
Genomes
Histones - metabolism
Life Sciences
Membrane Biology
Methylation
Methyltransferases - metabolism
Microbial genetics
Molecular biology
Molecular Sequence Data
Physiological aspects
Protein Structure
Protein Structure, Tertiary
Real-Time Polymerase Chain Reaction
RNA sequencing
RNA, Long Noncoding - metabolism
RNA-Induced Silencing Complex - metabolism
RNA-protein interactions
Saccharomyces
Schizosaccharomyces pombe Proteins - metabolism
Sequence Analysis, DNA
title Noncoding RNAs prevent spreading of a repressive histone mark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncoding%20RNAs%20prevent%20spreading%20of%20a%20repressive%20histone%20mark&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Keller,%20Claudia&rft.date=2013-08-01&rft.volume=20&rft.issue=8&rft.spage=994&rft.epage=1000&rft.pages=994-1000&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2619&rft_dat=%3Cgale_proqu%3EA341369030%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417572020&rft_id=info:pmid/23872991&rft_galeid=A341369030&rfr_iscdi=true