Noncoding RNAs prevent spreading of a repressive histone mark
HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2013-08, Vol.20 (8), p.994-1000 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1000 |
---|---|
container_issue | 8 |
container_start_page | 994 |
container_title | Nature structural & molecular biology |
container_volume | 20 |
creator | Keller, Claudia Kulasegaran-Shylini, Raghavendran Shimada, Yukiko Hotz, Hans-Rudolf Bühler, Marc |
description | HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1.
Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of
Schizosaccharomyces pombe
chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes. |
doi_str_mv | 10.1038/nsmb.2619 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418144799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A341369030</galeid><sourcerecordid>A341369030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EgrIceAEUiQsgpXhN4gOHqmKTUJFYzpaTTEpKEhc7qeDtcVjKKh88M_pm_RHaJXhIMEuOG1enQxoRuYIGRHARSpmI1aUt2QbadG6GMRUiZutog7IkplKSATqZmCYzedlMg5vJyAVzCwto2sB5Q7-FTRHowIL3nSsXEDyUrjUNBLW2j9tordCVg52Pfwvdn53ejS_Cq-vzy_HoKsw4l20Yx75XjiXWkSA8FUJQkLmUAjORElkUnEqa0iICThgQHCU5lyQBoRMsmYjYFjp4rzu35qkD16q6dBlUlW7AdE4RThLCuW_j0f1f6Mx0tvHT9VQsYoop_qKmugJVNoVprc76omrE_BCRxKynhv9Q_uVQl5k_QlH6-I-Ewx8JnmnhuZ3qzjl1eXvzL5tZ45yFQs1t6Y_6oghWvayql1X1snp272OpLq0hX5KfOnrg6B3wunnRwH7b-k-1V42dpkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417572020</pqid></control><display><type>article</type><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</creator><creatorcontrib>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</creatorcontrib><description>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1.
Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of
Schizosaccharomyces pombe
chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/nsmb.2619</identifier><identifier>PMID: 23872991</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/100 ; 631/337/100/2285 ; 631/337/384 ; 631/337/384/2568 ; 631/337/384/521 ; Argonaute Proteins - metabolism ; Base Sequence ; Biochemistry ; Biological Microscopy ; Blotting, Northern ; Blotting, Western ; Cell Cycle Proteins - metabolism ; Chromatin Immunoprecipitation ; Chromosomal Proteins, Non-Histone - metabolism ; Encroachment ; Endoribonucleases - metabolism ; Euchromatin - metabolism ; Genetic aspects ; Genetic transcription ; Genomes ; Histones - metabolism ; Life Sciences ; Membrane Biology ; Methylation ; Methyltransferases - metabolism ; Microbial genetics ; Molecular biology ; Molecular Sequence Data ; Physiological aspects ; Protein Structure ; Protein Structure, Tertiary ; Real-Time Polymerase Chain Reaction ; RNA sequencing ; RNA, Long Noncoding - metabolism ; RNA-Induced Silencing Complex - metabolism ; RNA-protein interactions ; Saccharomyces ; Schizosaccharomyces pombe Proteins - metabolism ; Sequence Analysis, DNA</subject><ispartof>Nature structural & molecular biology, 2013-08, Vol.20 (8), p.994-1000</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</citedby><cites>FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23872991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keller, Claudia</creatorcontrib><creatorcontrib>Kulasegaran-Shylini, Raghavendran</creatorcontrib><creatorcontrib>Shimada, Yukiko</creatorcontrib><creatorcontrib>Hotz, Hans-Rudolf</creatorcontrib><creatorcontrib>Bühler, Marc</creatorcontrib><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1.
Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of
Schizosaccharomyces pombe
chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</description><subject>631/337/100</subject><subject>631/337/100/2285</subject><subject>631/337/384</subject><subject>631/337/384/2568</subject><subject>631/337/384/521</subject><subject>Argonaute Proteins - metabolism</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Encroachment</subject><subject>Endoribonucleases - metabolism</subject><subject>Euchromatin - metabolism</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Histones - metabolism</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Methylation</subject><subject>Methyltransferases - metabolism</subject><subject>Microbial genetics</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Physiological aspects</subject><subject>Protein Structure</subject><subject>Protein Structure, Tertiary</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>RNA sequencing</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>RNA-Induced Silencing Complex - metabolism</subject><subject>RNA-protein interactions</subject><subject>Saccharomyces</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Sequence Analysis, DNA</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkclOwzAQhi0EgrIceAEUiQsgpXhN4gOHqmKTUJFYzpaTTEpKEhc7qeDtcVjKKh88M_pm_RHaJXhIMEuOG1enQxoRuYIGRHARSpmI1aUt2QbadG6GMRUiZutog7IkplKSATqZmCYzedlMg5vJyAVzCwto2sB5Q7-FTRHowIL3nSsXEDyUrjUNBLW2j9tordCVg52Pfwvdn53ejS_Cq-vzy_HoKsw4l20Yx75XjiXWkSA8FUJQkLmUAjORElkUnEqa0iICThgQHCU5lyQBoRMsmYjYFjp4rzu35qkD16q6dBlUlW7AdE4RThLCuW_j0f1f6Mx0tvHT9VQsYoop_qKmugJVNoVprc76omrE_BCRxKynhv9Q_uVQl5k_QlH6-I-Ewx8JnmnhuZ3qzjl1eXvzL5tZ45yFQs1t6Y_6oghWvayql1X1snp272OpLq0hX5KfOnrg6B3wunnRwH7b-k-1V42dpkE</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Keller, Claudia</creator><creator>Kulasegaran-Shylini, Raghavendran</creator><creator>Shimada, Yukiko</creator><creator>Hotz, Hans-Rudolf</creator><creator>Bühler, Marc</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130801</creationdate><title>Noncoding RNAs prevent spreading of a repressive histone mark</title><author>Keller, Claudia ; Kulasegaran-Shylini, Raghavendran ; Shimada, Yukiko ; Hotz, Hans-Rudolf ; Bühler, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-77991d090a6514b5552e9d995035b19ff4292b2f6e413e1068d4918e5a8093563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/337/100</topic><topic>631/337/100/2285</topic><topic>631/337/384</topic><topic>631/337/384/2568</topic><topic>631/337/384/521</topic><topic>Argonaute Proteins - metabolism</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Encroachment</topic><topic>Endoribonucleases - metabolism</topic><topic>Euchromatin - metabolism</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Histones - metabolism</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Methylation</topic><topic>Methyltransferases - metabolism</topic><topic>Microbial genetics</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Physiological aspects</topic><topic>Protein Structure</topic><topic>Protein Structure, Tertiary</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>RNA sequencing</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>RNA-Induced Silencing Complex - metabolism</topic><topic>RNA-protein interactions</topic><topic>Saccharomyces</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keller, Claudia</creatorcontrib><creatorcontrib>Kulasegaran-Shylini, Raghavendran</creatorcontrib><creatorcontrib>Shimada, Yukiko</creatorcontrib><creatorcontrib>Hotz, Hans-Rudolf</creatorcontrib><creatorcontrib>Bühler, Marc</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keller, Claudia</au><au>Kulasegaran-Shylini, Raghavendran</au><au>Shimada, Yukiko</au><au>Hotz, Hans-Rudolf</au><au>Bühler, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncoding RNAs prevent spreading of a repressive histone mark</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>20</volume><issue>8</issue><spage>994</spage><epage>1000</epage><pages>994-1000</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>HP1 proteins bind methylated histone H3 Lys9, a hallmark of heterochromatin, and mediate heterochromatin spreading by recruiting histone methyltransferase activities. New studies have now identified a long noncoding RNA called BORDERLINE that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of fission yeast chromosome 1.
Transcription of eukaryotic genomes is more widespread than was previously anticipated and results in the production of many non–protein-coding RNAs (ncRNAs) whose functional relevance is poorly understood. Here we demonstrate that ncRNAs can counteract the encroachment of heterochromatin into neighboring euchromatin. We have identified a long ncRNA (termed BORDERLINE) that prevents spreading of the HP1 protein Swi6 and histone H3 Lys9 methylation beyond the pericentromeric repeat region of
Schizosaccharomyces pombe
chromosome 1. BORDERLINE RNAs act in a sequence-independent but locus-dependent manner and are processed by Dicer into short RNAs referred to as brdrRNAs. In contrast to canonical centromeric short interfering RNAs, brdrRNAs are rarely loaded onto Argonaute. Our analyses reveal an unexpected regulatory activity of ncRNAs in demarcating an epigenetically distinct chromosomal domain that could also be operational in other eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>23872991</pmid><doi>10.1038/nsmb.2619</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2013-08, Vol.20 (8), p.994-1000 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418144799 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 631/337/100 631/337/100/2285 631/337/384 631/337/384/2568 631/337/384/521 Argonaute Proteins - metabolism Base Sequence Biochemistry Biological Microscopy Blotting, Northern Blotting, Western Cell Cycle Proteins - metabolism Chromatin Immunoprecipitation Chromosomal Proteins, Non-Histone - metabolism Encroachment Endoribonucleases - metabolism Euchromatin - metabolism Genetic aspects Genetic transcription Genomes Histones - metabolism Life Sciences Membrane Biology Methylation Methyltransferases - metabolism Microbial genetics Molecular biology Molecular Sequence Data Physiological aspects Protein Structure Protein Structure, Tertiary Real-Time Polymerase Chain Reaction RNA sequencing RNA, Long Noncoding - metabolism RNA-Induced Silencing Complex - metabolism RNA-protein interactions Saccharomyces Schizosaccharomyces pombe Proteins - metabolism Sequence Analysis, DNA |
title | Noncoding RNAs prevent spreading of a repressive histone mark |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncoding%20RNAs%20prevent%20spreading%20of%20a%20repressive%20histone%20mark&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Keller,%20Claudia&rft.date=2013-08-01&rft.volume=20&rft.issue=8&rft.spage=994&rft.epage=1000&rft.pages=994-1000&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/nsmb.2619&rft_dat=%3Cgale_proqu%3EA341369030%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417572020&rft_id=info:pmid/23872991&rft_galeid=A341369030&rfr_iscdi=true |