Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system
•Chitosan nanofibers were easily prepared by Star Burst system.•Chitosan nanofibers were characterized in detail.•As the number of passes increased, the nanofibers became thinner.•Mechanical properties of the nanofiber sheet were improved up to 10 passes.•Chitosan nanofibers could be dispersed homog...
Gespeichert in:
Veröffentlicht in: | Carbohydrate polymers 2013-09, Vol.97 (2), p.363-367 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 2 |
container_start_page | 363 |
container_title | Carbohydrate polymers |
container_volume | 97 |
creator | Dutta, Ajoy Kumar Kawamoto, Naoki Sugino, Gaku Izawa, Hironori Morimoto, Minoru Saimoto, Hiroyuki Ifuku, Shinsuke |
description | •Chitosan nanofibers were easily prepared by Star Burst system.•Chitosan nanofibers were characterized in detail.•As the number of passes increased, the nanofibers became thinner.•Mechanical properties of the nanofiber sheet were improved up to 10 passes.•Chitosan nanofibers could be dispersed homogeneously in neutral water.
Chitosan nanofibers were easily prepared from dry chitosan powder using the Star Burst system, which employs a high-pressure water jet system. Although the chitosan nanofibers became thinner as the number of Star Burst passes increased, the fiber thickness did not change significantly above 10 passes. Crystallinity and the chitosan nanofiber length decreased after extensive treatment due to the strong collision forces breaking the fibers. The mechanical properties and thermal expansion of the chitosan nanofiber sheets were improved by increasing the number of passes up to 10, but further treatment resulted in a deterioration of these properties. |
doi_str_mv | 10.1016/j.carbpol.2013.05.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418143043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713004852</els_id><sourcerecordid>1418143043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-a6c1a75a93de50592a1b258c4b7382af850bc566b52d49a85ae4643b11d178993</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EokvhJ4B8QeKS4IntxDkhWvElVeJQOHGwxs5E9SqJg-0F7b8n1S70yFzmMM_MvHoYewmiBgHt233tMbk1TnUjQNZC1wLEI7YD0_UVSKUes50ApSrTQnfBnuW8F1u1IJ6yi0b2AEqbHftxG-Z1Ir4mWjFhCXHhceT-LpSYceELLnEMjlLmY4ozH9LxYbjG3wMl7o683BG_LZj41SHlwvMxF5qfsycjTplenPsl-_7xw7frz9XN109frt_fVF61UCpsPWCnsZcDaaH7BsE12njlOmkaHI0Wzuu2dboZVI9GI6lWSQcwQGf6Xl6yN6e7a4o_D5SLnUP2NE24UDxkCwoMKCmU3FB9Qn2KOSca7ZrCjOloQdh7r3Zvz17tvVcrtN28bnuvzi8Obqbh39ZfkRvw-gxg9jiNCRcf8gPXbYm7vtm4dyeONiG_AiWbfaDF0xAS-WKHGP4T5Q-izJjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418143043</pqid></control><display><type>article</type><title>Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Dutta, Ajoy Kumar ; Kawamoto, Naoki ; Sugino, Gaku ; Izawa, Hironori ; Morimoto, Minoru ; Saimoto, Hiroyuki ; Ifuku, Shinsuke</creator><creatorcontrib>Dutta, Ajoy Kumar ; Kawamoto, Naoki ; Sugino, Gaku ; Izawa, Hironori ; Morimoto, Minoru ; Saimoto, Hiroyuki ; Ifuku, Shinsuke</creatorcontrib><description>•Chitosan nanofibers were easily prepared by Star Burst system.•Chitosan nanofibers were characterized in detail.•As the number of passes increased, the nanofibers became thinner.•Mechanical properties of the nanofiber sheet were improved up to 10 passes.•Chitosan nanofibers could be dispersed homogeneously in neutral water.
Chitosan nanofibers were easily prepared from dry chitosan powder using the Star Burst system, which employs a high-pressure water jet system. Although the chitosan nanofibers became thinner as the number of Star Burst passes increased, the fiber thickness did not change significantly above 10 passes. Crystallinity and the chitosan nanofiber length decreased after extensive treatment due to the strong collision forces breaking the fibers. The mechanical properties and thermal expansion of the chitosan nanofiber sheets were improved by increasing the number of passes up to 10, but further treatment resulted in a deterioration of these properties.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.05.010</identifier><identifier>PMID: 23911458</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animals ; Applied sciences ; Chitosan ; Chitosan - chemistry ; Crystallization ; Desiccation ; Elastic Modulus ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Light ; Nanofibers ; Nanofibers - chemistry ; Nanofibers - ultrastructure ; Nanotechnology - methods ; Natural polymers ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Powders ; Pressure ; Star Burst ; Starch and polysaccharides ; Suspensions ; Technology of polymers ; Temperature ; Tensile Strength ; Viscosity ; Water</subject><ispartof>Carbohydrate polymers, 2013-09, Vol.97 (2), p.363-367</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-a6c1a75a93de50592a1b258c4b7382af850bc566b52d49a85ae4643b11d178993</citedby><cites>FETCH-LOGICAL-c461t-a6c1a75a93de50592a1b258c4b7382af850bc566b52d49a85ae4643b11d178993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2013.05.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27643792$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23911458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Ajoy Kumar</creatorcontrib><creatorcontrib>Kawamoto, Naoki</creatorcontrib><creatorcontrib>Sugino, Gaku</creatorcontrib><creatorcontrib>Izawa, Hironori</creatorcontrib><creatorcontrib>Morimoto, Minoru</creatorcontrib><creatorcontrib>Saimoto, Hiroyuki</creatorcontrib><creatorcontrib>Ifuku, Shinsuke</creatorcontrib><title>Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Chitosan nanofibers were easily prepared by Star Burst system.•Chitosan nanofibers were characterized in detail.•As the number of passes increased, the nanofibers became thinner.•Mechanical properties of the nanofiber sheet were improved up to 10 passes.•Chitosan nanofibers could be dispersed homogeneously in neutral water.
Chitosan nanofibers were easily prepared from dry chitosan powder using the Star Burst system, which employs a high-pressure water jet system. Although the chitosan nanofibers became thinner as the number of Star Burst passes increased, the fiber thickness did not change significantly above 10 passes. Crystallinity and the chitosan nanofiber length decreased after extensive treatment due to the strong collision forces breaking the fibers. The mechanical properties and thermal expansion of the chitosan nanofiber sheets were improved by increasing the number of passes up to 10, but further treatment resulted in a deterioration of these properties.</description><subject>Animals</subject><subject>Applied sciences</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Crystallization</subject><subject>Desiccation</subject><subject>Elastic Modulus</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Light</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanofibers - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Powders</subject><subject>Pressure</subject><subject>Star Burst</subject><subject>Starch and polysaccharides</subject><subject>Suspensions</subject><subject>Technology of polymers</subject><subject>Temperature</subject><subject>Tensile Strength</subject><subject>Viscosity</subject><subject>Water</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EokvhJ4B8QeKS4IntxDkhWvElVeJQOHGwxs5E9SqJg-0F7b8n1S70yFzmMM_MvHoYewmiBgHt233tMbk1TnUjQNZC1wLEI7YD0_UVSKUes50ApSrTQnfBnuW8F1u1IJ6yi0b2AEqbHftxG-Z1Ir4mWjFhCXHhceT-LpSYceELLnEMjlLmY4ozH9LxYbjG3wMl7o683BG_LZj41SHlwvMxF5qfsycjTplenPsl-_7xw7frz9XN109frt_fVF61UCpsPWCnsZcDaaH7BsE12njlOmkaHI0Wzuu2dboZVI9GI6lWSQcwQGf6Xl6yN6e7a4o_D5SLnUP2NE24UDxkCwoMKCmU3FB9Qn2KOSca7ZrCjOloQdh7r3Zvz17tvVcrtN28bnuvzi8Obqbh39ZfkRvw-gxg9jiNCRcf8gPXbYm7vtm4dyeONiG_AiWbfaDF0xAS-WKHGP4T5Q-izJjQ</recordid><startdate>20130912</startdate><enddate>20130912</enddate><creator>Dutta, Ajoy Kumar</creator><creator>Kawamoto, Naoki</creator><creator>Sugino, Gaku</creator><creator>Izawa, Hironori</creator><creator>Morimoto, Minoru</creator><creator>Saimoto, Hiroyuki</creator><creator>Ifuku, Shinsuke</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20130912</creationdate><title>Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system</title><author>Dutta, Ajoy Kumar ; Kawamoto, Naoki ; Sugino, Gaku ; Izawa, Hironori ; Morimoto, Minoru ; Saimoto, Hiroyuki ; Ifuku, Shinsuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-a6c1a75a93de50592a1b258c4b7382af850bc566b52d49a85ae4643b11d178993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Applied sciences</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Crystallization</topic><topic>Desiccation</topic><topic>Elastic Modulus</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Light</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanofibers - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Powders</topic><topic>Pressure</topic><topic>Star Burst</topic><topic>Starch and polysaccharides</topic><topic>Suspensions</topic><topic>Technology of polymers</topic><topic>Temperature</topic><topic>Tensile Strength</topic><topic>Viscosity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ajoy Kumar</creatorcontrib><creatorcontrib>Kawamoto, Naoki</creatorcontrib><creatorcontrib>Sugino, Gaku</creatorcontrib><creatorcontrib>Izawa, Hironori</creatorcontrib><creatorcontrib>Morimoto, Minoru</creatorcontrib><creatorcontrib>Saimoto, Hiroyuki</creatorcontrib><creatorcontrib>Ifuku, Shinsuke</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ajoy Kumar</au><au>Kawamoto, Naoki</au><au>Sugino, Gaku</au><au>Izawa, Hironori</au><au>Morimoto, Minoru</au><au>Saimoto, Hiroyuki</au><au>Ifuku, Shinsuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2013-09-12</date><risdate>2013</risdate><volume>97</volume><issue>2</issue><spage>363</spage><epage>367</epage><pages>363-367</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Chitosan nanofibers were easily prepared by Star Burst system.•Chitosan nanofibers were characterized in detail.•As the number of passes increased, the nanofibers became thinner.•Mechanical properties of the nanofiber sheet were improved up to 10 passes.•Chitosan nanofibers could be dispersed homogeneously in neutral water.
Chitosan nanofibers were easily prepared from dry chitosan powder using the Star Burst system, which employs a high-pressure water jet system. Although the chitosan nanofibers became thinner as the number of Star Burst passes increased, the fiber thickness did not change significantly above 10 passes. Crystallinity and the chitosan nanofiber length decreased after extensive treatment due to the strong collision forces breaking the fibers. The mechanical properties and thermal expansion of the chitosan nanofiber sheets were improved by increasing the number of passes up to 10, but further treatment resulted in a deterioration of these properties.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23911458</pmid><doi>10.1016/j.carbpol.2013.05.010</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2013-09, Vol.97 (2), p.363-367 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418143043 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Applied sciences Chitosan Chitosan - chemistry Crystallization Desiccation Elastic Modulus Exact sciences and technology Fibers and threads Forms of application and semi-finished materials Light Nanofibers Nanofibers - chemistry Nanofibers - ultrastructure Nanotechnology - methods Natural polymers Physicochemistry of polymers Polymer industry, paints, wood Powders Pressure Star Burst Starch and polysaccharides Suspensions Technology of polymers Temperature Tensile Strength Viscosity Water |
title | Simple preparation of chitosan nanofibers from dry chitosan powder by the Star Burst system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20preparation%20of%20chitosan%20nanofibers%20from%20dry%20chitosan%20powder%20by%20the%20Star%20Burst%20system&rft.jtitle=Carbohydrate%20polymers&rft.au=Dutta,%20Ajoy%20Kumar&rft.date=2013-09-12&rft.volume=97&rft.issue=2&rft.spage=363&rft.epage=367&rft.pages=363-367&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.05.010&rft_dat=%3Cproquest_cross%3E1418143043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418143043&rft_id=info:pmid/23911458&rft_els_id=S0144861713004852&rfr_iscdi=true |