Comparing distributions by using dependent normalized random-measure mixtures
A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2013-06, Vol.75 (3), p.499-529 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 529 |
---|---|
container_issue | 3 |
container_start_page | 499 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 75 |
creator | Griffin, J. E. Kolossiatis, M. Steel, M. F. J. |
description | A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis. |
doi_str_mv | 10.1111/rssb.12002 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418120123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24772735</jstor_id><sourcerecordid>24772735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</originalsourceid><addsrcrecordid>eNqFkc-LEzEUxwdRsNa9eBcGvMjC1PzOzFGLVqWrsFvpMSSTN5I6M6nJDNvuX7_pjvbgwX0EXsj38w28982yVxgtcKp3IUazwAQh8iSbYSZkUZWifJruVFSFZJg8z17EuEOphKSz7Grpu70Orv-ZWxeH4Mw4ON_H3BzzMT48wx56C_2Q9z50unV3YPOge-u7ogMdxwB55w5D6vFl9qzRbYSLP32e_fj0cbP8XKy_r74s36-LmglKCqEZM8ZwCaimwAUyFlWmYaVGJh3LeIk5ZXXDRFNRbDHYptEVECRKC5bQefZ2-ncf_O8R4qA6F2toW92DH6PCDJdpC5jQx1EqiSBCMpbQN_-gOz-GPg2SKM4ZphWqEnU5UXXwMQZo1D64ToejwkidQlCnENRDCAnGE3zrWjj-h1TXNzcf_npeT55dHHw4ewiTkkjKk15MesoLDmddh18qRSq52n5bqe0Kl7LcbNVXeg9TbaL1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355413909</pqid></control><display><type>article</type><title>Comparing distributions by using dependent normalized random-measure mixtures</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</creator><creatorcontrib>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</creatorcontrib><description>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12002</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Average linear density ; Bayesian analysis ; Bayesian method ; Bayesian non-parametrics ; Computer simulation ; Construction ; Density ; Dependent distributions ; Dirichlet process ; Inference ; Mathematical models ; Methodology ; Modelling ; Multilevel models ; Nonprofit hospitals ; Normalized generalized gamma process ; Point masses ; Probability distributions ; Random sampling ; Reliability functions ; Sampling ; Simulation ; Slice sampling ; Statistics ; Steels ; Stochastic processes ; Studies ; Survival ; Survival analysis ; Utility function</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-06, Vol.75 (3), p.499-529</ispartof><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2013 Royal Statistical Society</rights><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</citedby><cites>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24772735$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24772735$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Griffin, J. E.</creatorcontrib><creatorcontrib>Kolossiatis, M.</creatorcontrib><creatorcontrib>Steel, M. F. J.</creatorcontrib><title>Comparing distributions by using dependent normalized random-measure mixtures</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J. R. Stat. Soc. B</addtitle><description>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</description><subject>Average linear density</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian non-parametrics</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Density</subject><subject>Dependent distributions</subject><subject>Dirichlet process</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Multilevel models</subject><subject>Nonprofit hospitals</subject><subject>Normalized generalized gamma process</subject><subject>Point masses</subject><subject>Probability distributions</subject><subject>Random sampling</subject><subject>Reliability functions</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Slice sampling</subject><subject>Statistics</subject><subject>Steels</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Utility function</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc-LEzEUxwdRsNa9eBcGvMjC1PzOzFGLVqWrsFvpMSSTN5I6M6nJDNvuX7_pjvbgwX0EXsj38w28982yVxgtcKp3IUazwAQh8iSbYSZkUZWifJruVFSFZJg8z17EuEOphKSz7Grpu70Orv-ZWxeH4Mw4ON_H3BzzMT48wx56C_2Q9z50unV3YPOge-u7ogMdxwB55w5D6vFl9qzRbYSLP32e_fj0cbP8XKy_r74s36-LmglKCqEZM8ZwCaimwAUyFlWmYaVGJh3LeIk5ZXXDRFNRbDHYptEVECRKC5bQefZ2-ncf_O8R4qA6F2toW92DH6PCDJdpC5jQx1EqiSBCMpbQN_-gOz-GPg2SKM4ZphWqEnU5UXXwMQZo1D64ToejwkidQlCnENRDCAnGE3zrWjj-h1TXNzcf_npeT55dHHw4ewiTkkjKk15MesoLDmddh18qRSq52n5bqe0Kl7LcbNVXeg9TbaL1</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Griffin, J. E.</creator><creator>Kolossiatis, M.</creator><creator>Steel, M. F. J.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>Comparing distributions by using dependent normalized random-measure mixtures</title><author>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Average linear density</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian non-parametrics</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Density</topic><topic>Dependent distributions</topic><topic>Dirichlet process</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Multilevel models</topic><topic>Nonprofit hospitals</topic><topic>Normalized generalized gamma process</topic><topic>Point masses</topic><topic>Probability distributions</topic><topic>Random sampling</topic><topic>Reliability functions</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Slice sampling</topic><topic>Statistics</topic><topic>Steels</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Utility function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, J. E.</creatorcontrib><creatorcontrib>Kolossiatis, M.</creatorcontrib><creatorcontrib>Steel, M. F. J.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, J. E.</au><au>Kolossiatis, M.</au><au>Steel, M. F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing distributions by using dependent normalized random-measure mixtures</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2013-06</date><risdate>2013</risdate><volume>75</volume><issue>3</issue><spage>499</spage><epage>529</epage><pages>499-529</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/rssb.12002</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-06, Vol.75 (3), p.499-529 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_1418120123 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics |
subjects | Average linear density Bayesian analysis Bayesian method Bayesian non-parametrics Computer simulation Construction Density Dependent distributions Dirichlet process Inference Mathematical models Methodology Modelling Multilevel models Nonprofit hospitals Normalized generalized gamma process Point masses Probability distributions Random sampling Reliability functions Sampling Simulation Slice sampling Statistics Steels Stochastic processes Studies Survival Survival analysis Utility function |
title | Comparing distributions by using dependent normalized random-measure mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20distributions%20by%20using%20dependent%20normalized%20random-measure%20mixtures&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Griffin,%20J.%20E.&rft.date=2013-06&rft.volume=75&rft.issue=3&rft.spage=499&rft.epage=529&rft.pages=499-529&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12002&rft_dat=%3Cjstor_proqu%3E24772735%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355413909&rft_id=info:pmid/&rft_jstor_id=24772735&rfr_iscdi=true |