Comparing distributions by using dependent normalized random-measure mixtures

A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2013-06, Vol.75 (3), p.499-529
Hauptverfasser: Griffin, J. E., Kolossiatis, M., Steel, M. F. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 3
container_start_page 499
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 75
creator Griffin, J. E.
Kolossiatis, M.
Steel, M. F. J.
description A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.
doi_str_mv 10.1111/rssb.12002
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1418120123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24772735</jstor_id><sourcerecordid>24772735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</originalsourceid><addsrcrecordid>eNqFkc-LEzEUxwdRsNa9eBcGvMjC1PzOzFGLVqWrsFvpMSSTN5I6M6nJDNvuX7_pjvbgwX0EXsj38w28982yVxgtcKp3IUazwAQh8iSbYSZkUZWifJruVFSFZJg8z17EuEOphKSz7Grpu70Orv-ZWxeH4Mw4ON_H3BzzMT48wx56C_2Q9z50unV3YPOge-u7ogMdxwB55w5D6vFl9qzRbYSLP32e_fj0cbP8XKy_r74s36-LmglKCqEZM8ZwCaimwAUyFlWmYaVGJh3LeIk5ZXXDRFNRbDHYptEVECRKC5bQefZ2-ncf_O8R4qA6F2toW92DH6PCDJdpC5jQx1EqiSBCMpbQN_-gOz-GPg2SKM4ZphWqEnU5UXXwMQZo1D64ToejwkidQlCnENRDCAnGE3zrWjj-h1TXNzcf_npeT55dHHw4ewiTkkjKk15MesoLDmddh18qRSq52n5bqe0Kl7LcbNVXeg9TbaL1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1355413909</pqid></control><display><type>article</type><title>Comparing distributions by using dependent normalized random-measure mixtures</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</creator><creatorcontrib>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</creatorcontrib><description>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12002</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Average linear density ; Bayesian analysis ; Bayesian method ; Bayesian non-parametrics ; Computer simulation ; Construction ; Density ; Dependent distributions ; Dirichlet process ; Inference ; Mathematical models ; Methodology ; Modelling ; Multilevel models ; Nonprofit hospitals ; Normalized generalized gamma process ; Point masses ; Probability distributions ; Random sampling ; Reliability functions ; Sampling ; Simulation ; Slice sampling ; Statistics ; Steels ; Stochastic processes ; Studies ; Survival ; Survival analysis ; Utility function</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-06, Vol.75 (3), p.499-529</ispartof><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2013 Royal Statistical Society</rights><rights>Copyright © 2013 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</citedby><cites>FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24772735$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24772735$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Griffin, J. E.</creatorcontrib><creatorcontrib>Kolossiatis, M.</creatorcontrib><creatorcontrib>Steel, M. F. J.</creatorcontrib><title>Comparing distributions by using dependent normalized random-measure mixtures</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J. R. Stat. Soc. B</addtitle><description>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</description><subject>Average linear density</subject><subject>Bayesian analysis</subject><subject>Bayesian method</subject><subject>Bayesian non-parametrics</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Density</subject><subject>Dependent distributions</subject><subject>Dirichlet process</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Multilevel models</subject><subject>Nonprofit hospitals</subject><subject>Normalized generalized gamma process</subject><subject>Point masses</subject><subject>Probability distributions</subject><subject>Random sampling</subject><subject>Reliability functions</subject><subject>Sampling</subject><subject>Simulation</subject><subject>Slice sampling</subject><subject>Statistics</subject><subject>Steels</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>Utility function</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc-LEzEUxwdRsNa9eBcGvMjC1PzOzFGLVqWrsFvpMSSTN5I6M6nJDNvuX7_pjvbgwX0EXsj38w28982yVxgtcKp3IUazwAQh8iSbYSZkUZWifJruVFSFZJg8z17EuEOphKSz7Grpu70Orv-ZWxeH4Mw4ON_H3BzzMT48wx56C_2Q9z50unV3YPOge-u7ogMdxwB55w5D6vFl9qzRbYSLP32e_fj0cbP8XKy_r74s36-LmglKCqEZM8ZwCaimwAUyFlWmYaVGJh3LeIk5ZXXDRFNRbDHYptEVECRKC5bQefZ2-ncf_O8R4qA6F2toW92DH6PCDJdpC5jQx1EqiSBCMpbQN_-gOz-GPg2SKM4ZphWqEnU5UXXwMQZo1D64ToejwkidQlCnENRDCAnGE3zrWjj-h1TXNzcf_npeT55dHHw4ewiTkkjKk15MesoLDmddh18qRSq52n5bqe0Kl7LcbNVXeg9TbaL1</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Griffin, J. E.</creator><creator>Kolossiatis, M.</creator><creator>Steel, M. F. J.</creator><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201306</creationdate><title>Comparing distributions by using dependent normalized random-measure mixtures</title><author>Griffin, J. E. ; Kolossiatis, M. ; Steel, M. F. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4632-6a44bbb57e0c3e560bd09bf48a0ba0bd4581534cf46f931d1edffa9e2068ded23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Average linear density</topic><topic>Bayesian analysis</topic><topic>Bayesian method</topic><topic>Bayesian non-parametrics</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Density</topic><topic>Dependent distributions</topic><topic>Dirichlet process</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Multilevel models</topic><topic>Nonprofit hospitals</topic><topic>Normalized generalized gamma process</topic><topic>Point masses</topic><topic>Probability distributions</topic><topic>Random sampling</topic><topic>Reliability functions</topic><topic>Sampling</topic><topic>Simulation</topic><topic>Slice sampling</topic><topic>Statistics</topic><topic>Steels</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>Utility function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffin, J. E.</creatorcontrib><creatorcontrib>Kolossiatis, M.</creatorcontrib><creatorcontrib>Steel, M. F. J.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffin, J. E.</au><au>Kolossiatis, M.</au><au>Steel, M. F. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing distributions by using dependent normalized random-measure mixtures</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2013-06</date><risdate>2013</risdate><volume>75</volume><issue>3</issue><spage>499</spage><epage>529</epage><pages>499-529</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>A methodology for the simultaneous Bayesian non-parametric modelling of several distributions is developed. Our approach uses normalized random measures with independent increments and builds dependence through the superposition of shared processes. The properties of the prior are described and the modelling possibilities of this framework are explored in detail. Efficient slice sampling methods are developed for inference. Various posterior summaries are introduced which allow better understanding of the differences between distributions. The methods are illustrated on simulated data and examples from survival analysis and stochastic frontier analysis.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/rssb.12002</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2013-06, Vol.75 (3), p.499-529
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_1418120123
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics
subjects Average linear density
Bayesian analysis
Bayesian method
Bayesian non-parametrics
Computer simulation
Construction
Density
Dependent distributions
Dirichlet process
Inference
Mathematical models
Methodology
Modelling
Multilevel models
Nonprofit hospitals
Normalized generalized gamma process
Point masses
Probability distributions
Random sampling
Reliability functions
Sampling
Simulation
Slice sampling
Statistics
Steels
Stochastic processes
Studies
Survival
Survival analysis
Utility function
title Comparing distributions by using dependent normalized random-measure mixtures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20distributions%20by%20using%20dependent%20normalized%20random-measure%20mixtures&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Griffin,%20J.%20E.&rft.date=2013-06&rft.volume=75&rft.issue=3&rft.spage=499&rft.epage=529&rft.pages=499-529&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12002&rft_dat=%3Cjstor_proqu%3E24772735%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1355413909&rft_id=info:pmid/&rft_jstor_id=24772735&rfr_iscdi=true