Charge-cluster glass in an organic conductor

Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2013-07, Vol.9 (7), p.419-422
Hauptverfasser: Kagawa, F., Sato, T., Miyagawa, K., Kanoda, K., Tokura, Y., Kobayashi, K., Kumai, R., Murakami, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 422
container_issue 7
container_start_page 419
container_title Nature physics
container_volume 9
creator Kagawa, F.
Sato, T.
Miyagawa, K.
Kanoda, K.
Tokura, Y.
Kobayashi, K.
Kumai, R.
Murakami, Y.
description Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature. Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids 1 , or classically disordered states, such as spin ices 2 , 3 or spin glasses 4 . Geometric frustration may play a similar role in charge ordering 5 , 6 , potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (
doi_str_mv 10.1038/nphys2642
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417915774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417915774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9BwYuK1UySNulRil-w4EXPIc1Ht0s3WZP2sP_eLiuLKAzMHB5ehhehS8D3gKl48JvlNpGSkSM0A86KnDABx4eb01N0ltIKY0ZKoDN0Vy9VbG2u-zENNmZtr1LKOp8pn4XYKt_pTAdvRj2EeI5OnOqTvfjZc_T5_PRRv-aL95e3-nGRa1riIeek0sZQqsA1pCmFIE3DFBhNhRKOGSWU4YXDVcOd4Y5XBpoST2OpYwVmdI6u97mbGL5Gmwa57pK2fa-8DWOSwIBXUHC-o1d_6CqM0U_fSaCccFpAtVM3e6VjSClaJzexW6u4lYDlrjd56G2yt3ubJuNbG38l_sPfFH5uQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372735194</pqid></control><display><type>article</type><title>Charge-cluster glass in an organic conductor</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</creator><creatorcontrib>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</creatorcontrib><description>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature. Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids 1 , or classically disordered states, such as spin ices 2 , 3 or spin glasses 4 . Geometric frustration may play a similar role in charge ordering 5 , 6 , potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (&lt;10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids 7 , 8 , 9 , 10 . Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants 11 , 12 . As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2642</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Atomic ; Charge ; Classical and Continuum Physics ; Clusters ; Complex Systems ; Condensed Matter Physics ; Conductivity ; Conductors (devices) ; Cooling ; Dynamics ; Glass ; Glassy ; letter ; Low temperature ; Low temperature physics ; Materials science ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Order disorder ; Physics ; Theoretical ; X-ray diffraction</subject><ispartof>Nature physics, 2013-07, Vol.9 (7), p.419-422</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</citedby><cites>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kagawa, F.</creatorcontrib><creatorcontrib>Sato, T.</creatorcontrib><creatorcontrib>Miyagawa, K.</creatorcontrib><creatorcontrib>Kanoda, K.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Kumai, R.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><title>Charge-cluster glass in an organic conductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature. Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids 1 , or classically disordered states, such as spin ices 2 , 3 or spin glasses 4 . Geometric frustration may play a similar role in charge ordering 5 , 6 , potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (&lt;10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids 7 , 8 , 9 , 10 . Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants 11 , 12 . As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</description><subject>639/301/119/995</subject><subject>Atomic</subject><subject>Charge</subject><subject>Classical and Continuum Physics</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Conductors (devices)</subject><subject>Cooling</subject><subject>Dynamics</subject><subject>Glass</subject><subject>Glassy</subject><subject>letter</subject><subject>Low temperature</subject><subject>Low temperature physics</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Order disorder</subject><subject>Physics</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LxDAQBuAgCq6rB_9BwYuK1UySNulRil-w4EXPIc1Ht0s3WZP2sP_eLiuLKAzMHB5ehhehS8D3gKl48JvlNpGSkSM0A86KnDABx4eb01N0ltIKY0ZKoDN0Vy9VbG2u-zENNmZtr1LKOp8pn4XYKt_pTAdvRj2EeI5OnOqTvfjZc_T5_PRRv-aL95e3-nGRa1riIeek0sZQqsA1pCmFIE3DFBhNhRKOGSWU4YXDVcOd4Y5XBpoST2OpYwVmdI6u97mbGL5Gmwa57pK2fa-8DWOSwIBXUHC-o1d_6CqM0U_fSaCccFpAtVM3e6VjSClaJzexW6u4lYDlrjd56G2yt3ubJuNbG38l_sPfFH5uQw</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Kagawa, F.</creator><creator>Sato, T.</creator><creator>Miyagawa, K.</creator><creator>Kanoda, K.</creator><creator>Tokura, Y.</creator><creator>Kobayashi, K.</creator><creator>Kumai, R.</creator><creator>Murakami, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130701</creationdate><title>Charge-cluster glass in an organic conductor</title><author>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/995</topic><topic>Atomic</topic><topic>Charge</topic><topic>Classical and Continuum Physics</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Conductors (devices)</topic><topic>Cooling</topic><topic>Dynamics</topic><topic>Glass</topic><topic>Glassy</topic><topic>letter</topic><topic>Low temperature</topic><topic>Low temperature physics</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Order disorder</topic><topic>Physics</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kagawa, F.</creatorcontrib><creatorcontrib>Sato, T.</creatorcontrib><creatorcontrib>Miyagawa, K.</creatorcontrib><creatorcontrib>Kanoda, K.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Kumai, R.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kagawa, F.</au><au>Sato, T.</au><au>Miyagawa, K.</au><au>Kanoda, K.</au><au>Tokura, Y.</au><au>Kobayashi, K.</au><au>Kumai, R.</au><au>Murakami, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-cluster glass in an organic conductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>9</volume><issue>7</issue><spage>419</spage><epage>422</epage><pages>419-422</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature. Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids 1 , or classically disordered states, such as spin ices 2 , 3 or spin glasses 4 . Geometric frustration may play a similar role in charge ordering 5 , 6 , potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (&lt;10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids 7 , 8 , 9 , 10 . Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants 11 , 12 . As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2642</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2013-07, Vol.9 (7), p.419-422
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_miscellaneous_1417915774
source Nature; Alma/SFX Local Collection
subjects 639/301/119/995
Atomic
Charge
Classical and Continuum Physics
Clusters
Complex Systems
Condensed Matter Physics
Conductivity
Conductors (devices)
Cooling
Dynamics
Glass
Glassy
letter
Low temperature
Low temperature physics
Materials science
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Order disorder
Physics
Theoretical
X-ray diffraction
title Charge-cluster glass in an organic conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-cluster%20glass%20in%20an%20organic%20conductor&rft.jtitle=Nature%20physics&rft.au=Kagawa,%20F.&rft.date=2013-07-01&rft.volume=9&rft.issue=7&rft.spage=419&rft.epage=422&rft.pages=419-422&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2642&rft_dat=%3Cproquest_cross%3E1417915774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372735194&rft_id=info:pmid/&rfr_iscdi=true