Charge-cluster glass in an organic conductor
Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at...
Gespeichert in:
Veröffentlicht in: | Nature physics 2013-07, Vol.9 (7), p.419-422 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 422 |
---|---|
container_issue | 7 |
container_start_page | 419 |
container_title | Nature physics |
container_volume | 9 |
creator | Kagawa, F. Sato, T. Miyagawa, K. Kanoda, K. Tokura, Y. Kobayashi, K. Kumai, R. Murakami, Y. |
description | Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature.
Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids
1
, or classically disordered states, such as spin ices
2
,
3
or spin glasses
4
. Geometric frustration may play a similar role in charge ordering
5
,
6
, potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly ( |
doi_str_mv | 10.1038/nphys2642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417915774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417915774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgCq6rB_9BwYuK1UySNulRil-w4EXPIc1Ht0s3WZP2sP_eLiuLKAzMHB5ehhehS8D3gKl48JvlNpGSkSM0A86KnDABx4eb01N0ltIKY0ZKoDN0Vy9VbG2u-zENNmZtr1LKOp8pn4XYKt_pTAdvRj2EeI5OnOqTvfjZc_T5_PRRv-aL95e3-nGRa1riIeek0sZQqsA1pCmFIE3DFBhNhRKOGSWU4YXDVcOd4Y5XBpoST2OpYwVmdI6u97mbGL5Gmwa57pK2fa-8DWOSwIBXUHC-o1d_6CqM0U_fSaCccFpAtVM3e6VjSClaJzexW6u4lYDlrjd56G2yt3ubJuNbG38l_sPfFH5uQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372735194</pqid></control><display><type>article</type><title>Charge-cluster glass in an organic conductor</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</creator><creatorcontrib>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</creatorcontrib><description>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature.
Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids
1
, or classically disordered states, such as spin ices
2
,
3
or spin glasses
4
. Geometric frustration may play a similar role in charge ordering
5
,
6
, potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (<10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids
7
,
8
,
9
,
10
. Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants
11
,
12
. As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys2642</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Atomic ; Charge ; Classical and Continuum Physics ; Clusters ; Complex Systems ; Condensed Matter Physics ; Conductivity ; Conductors (devices) ; Cooling ; Dynamics ; Glass ; Glassy ; letter ; Low temperature ; Low temperature physics ; Materials science ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Order disorder ; Physics ; Theoretical ; X-ray diffraction</subject><ispartof>Nature physics, 2013-07, Vol.9 (7), p.419-422</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</citedby><cites>FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kagawa, F.</creatorcontrib><creatorcontrib>Sato, T.</creatorcontrib><creatorcontrib>Miyagawa, K.</creatorcontrib><creatorcontrib>Kanoda, K.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Kumai, R.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><title>Charge-cluster glass in an organic conductor</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature.
Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids
1
, or classically disordered states, such as spin ices
2
,
3
or spin glasses
4
. Geometric frustration may play a similar role in charge ordering
5
,
6
, potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (<10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids
7
,
8
,
9
,
10
. Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants
11
,
12
. As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</description><subject>639/301/119/995</subject><subject>Atomic</subject><subject>Charge</subject><subject>Classical and Continuum Physics</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Conductors (devices)</subject><subject>Cooling</subject><subject>Dynamics</subject><subject>Glass</subject><subject>Glassy</subject><subject>letter</subject><subject>Low temperature</subject><subject>Low temperature physics</subject><subject>Materials science</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Order disorder</subject><subject>Physics</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0E1LxDAQBuAgCq6rB_9BwYuK1UySNulRil-w4EXPIc1Ht0s3WZP2sP_eLiuLKAzMHB5ehhehS8D3gKl48JvlNpGSkSM0A86KnDABx4eb01N0ltIKY0ZKoDN0Vy9VbG2u-zENNmZtr1LKOp8pn4XYKt_pTAdvRj2EeI5OnOqTvfjZc_T5_PRRv-aL95e3-nGRa1riIeek0sZQqsA1pCmFIE3DFBhNhRKOGSWU4YXDVcOd4Y5XBpoST2OpYwVmdI6u97mbGL5Gmwa57pK2fa-8DWOSwIBXUHC-o1d_6CqM0U_fSaCccFpAtVM3e6VjSClaJzexW6u4lYDlrjd56G2yt3ubJuNbG38l_sPfFH5uQw</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Kagawa, F.</creator><creator>Sato, T.</creator><creator>Miyagawa, K.</creator><creator>Kanoda, K.</creator><creator>Tokura, Y.</creator><creator>Kobayashi, K.</creator><creator>Kumai, R.</creator><creator>Murakami, Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20130701</creationdate><title>Charge-cluster glass in an organic conductor</title><author>Kagawa, F. ; Sato, T. ; Miyagawa, K. ; Kanoda, K. ; Tokura, Y. ; Kobayashi, K. ; Kumai, R. ; Murakami, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-729cdd33a1fb2b6882bb4a1dc38a8f4da8ad75f09b7fd7f79d1b60b60e3f45043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/119/995</topic><topic>Atomic</topic><topic>Charge</topic><topic>Classical and Continuum Physics</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Conductors (devices)</topic><topic>Cooling</topic><topic>Dynamics</topic><topic>Glass</topic><topic>Glassy</topic><topic>letter</topic><topic>Low temperature</topic><topic>Low temperature physics</topic><topic>Materials science</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Order disorder</topic><topic>Physics</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kagawa, F.</creatorcontrib><creatorcontrib>Sato, T.</creatorcontrib><creatorcontrib>Miyagawa, K.</creatorcontrib><creatorcontrib>Kanoda, K.</creatorcontrib><creatorcontrib>Tokura, Y.</creatorcontrib><creatorcontrib>Kobayashi, K.</creatorcontrib><creatorcontrib>Kumai, R.</creatorcontrib><creatorcontrib>Murakami, Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kagawa, F.</au><au>Sato, T.</au><au>Miyagawa, K.</au><au>Kanoda, K.</au><au>Tokura, Y.</au><au>Kobayashi, K.</au><au>Kumai, R.</au><au>Murakami, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge-cluster glass in an organic conductor</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>9</volume><issue>7</issue><spage>419</spage><epage>422</epage><pages>419-422</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Geometrically frustrated spin-systems do not order magnetically even at absolute zero, forming instead a spin liquid or a glassy state. An organic conductor in which the charges, rather than spins, are frustrated now shows a similar absence of long-range order, resulting in a charge-cluster glass at low temperature.
Geometrically frustrated spin systems often do not exhibit long-range magnetic ordering, resulting in either quantum-mechanically disordered states, such as quantum spin liquids
1
, or classically disordered states, such as spin ices
2
,
3
or spin glasses
4
. Geometric frustration may play a similar role in charge ordering
5
,
6
, potentially leading to unconventional electronic states without long-range order; however, there are no previous experimental demonstrations of this phenomenon. Here, we show that a charge-cluster glass evolves on cooling in the absence of long-range charge ordering for an organic conductor with a triangular lattice. A combination of time-resolved transport measurements and X-ray diffraction reveals that the charge-liquid phase has two-dimensional charge clusters that fluctuate extremely slowly (<10–100 Hz) and heterogeneously. On further cooling, the cluster dynamics freezes, and a charge-cluster glass is formed. Surprisingly, these observations correspond to recent ideas regarding the structural glass formation of supercooled liquids
7
,
8
,
9
,
10
. Glassy behaviour has often been found in transition-metal oxides, but only under the influence of randomly located dopants
11
,
12
. As organic conductors are very clean systems, the present glassy behaviour is probably conceptually different.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys2642</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2013-07, Vol.9 (7), p.419-422 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417915774 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/301/119/995 Atomic Charge Classical and Continuum Physics Clusters Complex Systems Condensed Matter Physics Conductivity Conductors (devices) Cooling Dynamics Glass Glassy letter Low temperature Low temperature physics Materials science Mathematical and Computational Physics Molecular Optical and Plasma Physics Order disorder Physics Theoretical X-ray diffraction |
title | Charge-cluster glass in an organic conductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge-cluster%20glass%20in%20an%20organic%20conductor&rft.jtitle=Nature%20physics&rft.au=Kagawa,%20F.&rft.date=2013-07-01&rft.volume=9&rft.issue=7&rft.spage=419&rft.epage=422&rft.pages=419-422&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys2642&rft_dat=%3Cproquest_cross%3E1417915774%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372735194&rft_id=info:pmid/&rfr_iscdi=true |