Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer
Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still co...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2013-07, Vol.7 (7), p.535-539 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 7 |
container_start_page | 535 |
container_title | Nature photonics |
container_volume | 7 |
creator | Kinoshita, Takumi Dy, Joanne Ting Uchida, Satoshi Kubo, Takaya Segawa, Hiroshi |
description | Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells
1
,
2
and dye-sensitized solar cells (DSSCs)
3
,
4
are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru(
II
) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm
−2
, the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm
−2
simulated sunlight.
Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition. |
doi_str_mv | 10.1038/nphoton.2013.136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417899738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3006422911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgNu3KTOK_NYSvEFBTeK4CZMkpt2SjoTZ5JF_fVOaSkiuLr3wnfOPRyErgmeEczUnetXfvBuRjFhM8LECZoQyXXOlWanx10V5-gixjXGBdOUTtDnh22gMq7Jmi3kEVy0g_2GJou-MyGroetiBpu-81vrlpnJ0pvYr6yDvPY-NNaZIdFhHFbg7LjJjhbhEp21potwdZhT9P748DZ_zhevTy_z-0Vec6qH3ChWcE4UYEola6lRQhpNhGCSVg2lpMUmgQJUxYGlg1VtURBKRS00F5JN0e3etw_-a4Q4lBsbd8GNAz_GknAildaSqYTe_EHXfgwupSsJk0RxXUicKLyn6uBjDNCWfbAbE7YlweWu7PJQdrkrOylFkpC9JCbULSH8Mv5P8wNth4UT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371849570</pqid></control><display><type>article</type><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</creator><creatorcontrib>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</creatorcontrib><description>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells
1
,
2
and dye-sensitized solar cells (DSSCs)
3
,
4
are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru(
II
) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm
−2
, the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm
−2
simulated sunlight.
Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2013.136</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/624/1075/524 ; 639/638/439/946 ; Applied and Technical Physics ; Density ; Dyes ; Energy conversion efficiency ; letter ; Organic compounds ; Photocurrent ; Photovoltaic cells ; Photovoltaics ; Physics ; Quantum Physics ; Renewable energy ; Ruthenium ; Solar cells ; Thin films ; Wavelengths ; Wideband</subject><ispartof>Nature photonics, 2013-07, Vol.7 (7), p.535-539</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</citedby><cites>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2013.136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2013.136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kinoshita, Takumi</creatorcontrib><creatorcontrib>Dy, Joanne Ting</creatorcontrib><creatorcontrib>Uchida, Satoshi</creatorcontrib><creatorcontrib>Kubo, Takaya</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells
1
,
2
and dye-sensitized solar cells (DSSCs)
3
,
4
are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru(
II
) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm
−2
, the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm
−2
simulated sunlight.
Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</description><subject>639/301/299/946</subject><subject>639/624/1075/524</subject><subject>639/638/439/946</subject><subject>Applied and Technical Physics</subject><subject>Density</subject><subject>Dyes</subject><subject>Energy conversion efficiency</subject><subject>letter</subject><subject>Organic compounds</subject><subject>Photocurrent</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Quantum Physics</subject><subject>Renewable energy</subject><subject>Ruthenium</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Wavelengths</subject><subject>Wideband</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLw0AUhQdRsFb3LgNu3KTOK_NYSvEFBTeK4CZMkpt2SjoTZ5JF_fVOaSkiuLr3wnfOPRyErgmeEczUnetXfvBuRjFhM8LECZoQyXXOlWanx10V5-gixjXGBdOUTtDnh22gMq7Jmi3kEVy0g_2GJou-MyGroetiBpu-81vrlpnJ0pvYr6yDvPY-NNaZIdFhHFbg7LjJjhbhEp21potwdZhT9P748DZ_zhevTy_z-0Vec6qH3ChWcE4UYEola6lRQhpNhGCSVg2lpMUmgQJUxYGlg1VtURBKRS00F5JN0e3etw_-a4Q4lBsbd8GNAz_GknAildaSqYTe_EHXfgwupSsJk0RxXUicKLyn6uBjDNCWfbAbE7YlweWu7PJQdrkrOylFkpC9JCbULSH8Mv5P8wNth4UT</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Kinoshita, Takumi</creator><creator>Dy, Joanne Ting</creator><creator>Uchida, Satoshi</creator><creator>Kubo, Takaya</creator><creator>Segawa, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130701</creationdate><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><author>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/299/946</topic><topic>639/624/1075/524</topic><topic>639/638/439/946</topic><topic>Applied and Technical Physics</topic><topic>Density</topic><topic>Dyes</topic><topic>Energy conversion efficiency</topic><topic>letter</topic><topic>Organic compounds</topic><topic>Photocurrent</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Quantum Physics</topic><topic>Renewable energy</topic><topic>Ruthenium</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Wavelengths</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Takumi</creatorcontrib><creatorcontrib>Dy, Joanne Ting</creatorcontrib><creatorcontrib>Uchida, Satoshi</creatorcontrib><creatorcontrib>Kubo, Takaya</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Takumi</au><au>Dy, Joanne Ting</au><au>Uchida, Satoshi</au><au>Kubo, Takaya</au><au>Segawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>535</spage><epage>539</epage><pages>535-539</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells
1
,
2
and dye-sensitized solar cells (DSSCs)
3
,
4
are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru(
II
) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm
−2
, the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm
−2
simulated sunlight.
Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2013.136</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2013-07, Vol.7 (7), p.535-539 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417899738 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/299/946 639/624/1075/524 639/638/439/946 Applied and Technical Physics Density Dyes Energy conversion efficiency letter Organic compounds Photocurrent Photovoltaic cells Photovoltaics Physics Quantum Physics Renewable energy Ruthenium Solar cells Thin films Wavelengths Wideband |
title | Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20dye-sensitized%20solar%20cells%20employing%20a%20phosphine-coordinated%20ruthenium%20sensitizer&rft.jtitle=Nature%20photonics&rft.au=Kinoshita,%20Takumi&rft.date=2013-07-01&rft.volume=7&rft.issue=7&rft.spage=535&rft.epage=539&rft.pages=535-539&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2013.136&rft_dat=%3Cproquest_cross%3E3006422911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371849570&rft_id=info:pmid/&rfr_iscdi=true |