Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer

Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2013-07, Vol.7 (7), p.535-539
Hauptverfasser: Kinoshita, Takumi, Dy, Joanne Ting, Uchida, Satoshi, Kubo, Takaya, Segawa, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 7
container_start_page 535
container_title Nature photonics
container_volume 7
creator Kinoshita, Takumi
Dy, Joanne Ting
Uchida, Satoshi
Kubo, Takaya
Segawa, Hiroshi
description Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru( II ) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm −2 , the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of >12% under 35.5 mW cm −2 simulated sunlight. Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.
doi_str_mv 10.1038/nphoton.2013.136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417899738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3006422911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRsFb3LgNu3KTOK_NYSvEFBTeK4CZMkpt2SjoTZ5JF_fVOaSkiuLr3wnfOPRyErgmeEczUnetXfvBuRjFhM8LECZoQyXXOlWanx10V5-gixjXGBdOUTtDnh22gMq7Jmi3kEVy0g_2GJou-MyGroetiBpu-81vrlpnJ0pvYr6yDvPY-NNaZIdFhHFbg7LjJjhbhEp21potwdZhT9P748DZ_zhevTy_z-0Vec6qH3ChWcE4UYEola6lRQhpNhGCSVg2lpMUmgQJUxYGlg1VtURBKRS00F5JN0e3etw_-a4Q4lBsbd8GNAz_GknAildaSqYTe_EHXfgwupSsJk0RxXUicKLyn6uBjDNCWfbAbE7YlweWu7PJQdrkrOylFkpC9JCbULSH8Mv5P8wNth4UT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371849570</pqid></control><display><type>article</type><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</creator><creatorcontrib>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</creatorcontrib><description>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru( II ) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm −2 , the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of &gt;12% under 35.5 mW cm −2 simulated sunlight. Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2013.136</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/946 ; 639/624/1075/524 ; 639/638/439/946 ; Applied and Technical Physics ; Density ; Dyes ; Energy conversion efficiency ; letter ; Organic compounds ; Photocurrent ; Photovoltaic cells ; Photovoltaics ; Physics ; Quantum Physics ; Renewable energy ; Ruthenium ; Solar cells ; Thin films ; Wavelengths ; Wideband</subject><ispartof>Nature photonics, 2013-07, Vol.7 (7), p.535-539</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</citedby><cites>FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2013.136$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2013.136$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kinoshita, Takumi</creatorcontrib><creatorcontrib>Dy, Joanne Ting</creatorcontrib><creatorcontrib>Uchida, Satoshi</creatorcontrib><creatorcontrib>Kubo, Takaya</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru( II ) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm −2 , the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of &gt;12% under 35.5 mW cm −2 simulated sunlight. Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</description><subject>639/301/299/946</subject><subject>639/624/1075/524</subject><subject>639/638/439/946</subject><subject>Applied and Technical Physics</subject><subject>Density</subject><subject>Dyes</subject><subject>Energy conversion efficiency</subject><subject>letter</subject><subject>Organic compounds</subject><subject>Photocurrent</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Physics</subject><subject>Quantum Physics</subject><subject>Renewable energy</subject><subject>Ruthenium</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Wavelengths</subject><subject>Wideband</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLw0AUhQdRsFb3LgNu3KTOK_NYSvEFBTeK4CZMkpt2SjoTZ5JF_fVOaSkiuLr3wnfOPRyErgmeEczUnetXfvBuRjFhM8LECZoQyXXOlWanx10V5-gixjXGBdOUTtDnh22gMq7Jmi3kEVy0g_2GJou-MyGroetiBpu-81vrlpnJ0pvYr6yDvPY-NNaZIdFhHFbg7LjJjhbhEp21potwdZhT9P748DZ_zhevTy_z-0Vec6qH3ChWcE4UYEola6lRQhpNhGCSVg2lpMUmgQJUxYGlg1VtURBKRS00F5JN0e3etw_-a4Q4lBsbd8GNAz_GknAildaSqYTe_EHXfgwupSsJk0RxXUicKLyn6uBjDNCWfbAbE7YlweWu7PJQdrkrOylFkpC9JCbULSH8Mv5P8wNth4UT</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Kinoshita, Takumi</creator><creator>Dy, Joanne Ting</creator><creator>Uchida, Satoshi</creator><creator>Kubo, Takaya</creator><creator>Segawa, Hiroshi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130701</creationdate><title>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</title><author>Kinoshita, Takumi ; Dy, Joanne Ting ; Uchida, Satoshi ; Kubo, Takaya ; Segawa, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a8354418e02273f2a867a9166372bd221f0a4296e8b4e3f0a3bf551226c694673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/301/299/946</topic><topic>639/624/1075/524</topic><topic>639/638/439/946</topic><topic>Applied and Technical Physics</topic><topic>Density</topic><topic>Dyes</topic><topic>Energy conversion efficiency</topic><topic>letter</topic><topic>Organic compounds</topic><topic>Photocurrent</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Physics</topic><topic>Quantum Physics</topic><topic>Renewable energy</topic><topic>Ruthenium</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Wavelengths</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinoshita, Takumi</creatorcontrib><creatorcontrib>Dy, Joanne Ting</creatorcontrib><creatorcontrib>Uchida, Satoshi</creatorcontrib><creatorcontrib>Kubo, Takaya</creatorcontrib><creatorcontrib>Segawa, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinoshita, Takumi</au><au>Dy, Joanne Ting</au><au>Uchida, Satoshi</au><au>Kubo, Takaya</au><au>Segawa, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>535</spage><epage>539</epage><pages>535-539</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Low-cost renewable energies are necessary for the realization of a low-carbon society. Organic photovoltaics such as organic thin-film solar cells 1 , 2 and dye-sensitized solar cells (DSSCs) 3 , 4 are promising candidates for realizing low-cost solar cells. However, device efficiencies are still considerably lower than those of traditional inorganic solar cells. To improve organic photovoltaic performance, approaches are needed to extend the absorption of organic compounds to longer wavelengths. Here, we report efficient DSSCs that exploit near-infrared, spin-forbidden singlet-to-triplet direct transitions in a phosphine-coordinated Ru( II ) sensitizer, DX1. A DSSC using DX1 generated a photocurrent density of 26.8 mA cm −2 , the highest value for an organic photovoltaic reported to date. A tandem-type DSSC employing both DX1 and the traditional sensitizer N719 is shown to have a power conversion efficiency of &gt;12% under 35.5 mW cm −2 simulated sunlight. Single and tandem dye-sensitized solar cells with high power-conversion efficiencies and large photocurrent densities are fabricated using a photosensitizer whose long wavelength absorption originates from a spin-forbidden single–triplet transition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2013.136</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2013-07, Vol.7 (7), p.535-539
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_miscellaneous_1417899738
source SpringerLink Journals; Nature Journals Online
subjects 639/301/299/946
639/624/1075/524
639/638/439/946
Applied and Technical Physics
Density
Dyes
Energy conversion efficiency
letter
Organic compounds
Photocurrent
Photovoltaic cells
Photovoltaics
Physics
Quantum Physics
Renewable energy
Ruthenium
Solar cells
Thin films
Wavelengths
Wideband
title Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20dye-sensitized%20solar%20cells%20employing%20a%20phosphine-coordinated%20ruthenium%20sensitizer&rft.jtitle=Nature%20photonics&rft.au=Kinoshita,%20Takumi&rft.date=2013-07-01&rft.volume=7&rft.issue=7&rft.spage=535&rft.epage=539&rft.pages=535-539&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2013.136&rft_dat=%3Cproquest_cross%3E3006422911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371849570&rft_id=info:pmid/&rfr_iscdi=true