IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS
Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2013-01, Vol.51 (4), p.1875-1899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1899 |
---|---|
container_issue | 4 |
container_start_page | 1875 |
container_title | SIAM journal on numerical analysis |
container_volume | 51 |
creator | HERTY, M. PARESCHI, L. STEFFENSEN, S. |
description | Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented. |
doi_str_mv | 10.1137/120865045 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417898086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42004056</jstor_id><sourcerecordid>42004056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFYX_gAh4EYX0TuZRzLLGqdtMI-SB4gLQ5pMoKVtaqZd-O8diXTh6t7D_e7hcBC6xfCEMXGfsQMeZ0DZGRphEMx2sQvnaARAuI2pIy7RldZrMNrDZIQ-g2gRBn6Q2_J9WKy0iGfSfivyfGJl_lxGMrOmSWrFRSTTwJ-E1muQ-anMg49JHiSxlUytZJEHkbn4SZynSWgt0uQllFF2jS7aaqPVzd8co2Iqc39uh8ns18quCXUPdsM8cGrX4x4nTVMD50LwBhStKkYr1bYVXhKHKSU8AAOwFrdtLRrhLsEziozRw-C777uvo9KHcrvStdpsqp3qjrrEFLueeTb-Y3T_D113x35n0pWmQOI43GXCUI8DVfed1r1qy32_2lb9d4mh_G26PDVt2LuBXetD159A6gBQYJz8ABhBcMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1373226759</pqid></control><display><type>article</type><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</creator><creatorcontrib>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</creatorcontrib><description>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/120865045</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Adjoints ; Applied mathematics ; Coefficients ; Differential equations ; Differentials ; Discretization ; Hyperlinks ; Investigations ; Lagrange multiplier ; Mathematical analysis ; Mathematical problems ; Matrices ; Methods ; Numerical analysis ; Optimal control ; Optimization ; Runge Kutta method ; Transformations</subject><ispartof>SIAM journal on numerical analysis, 2013-01, Vol.51 (4), p.1875-1899</ispartof><rights>Copyright ©2013 Society for Industrial and Applied Mathematics</rights><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</citedby><cites>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42004056$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42004056$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>HERTY, M.</creatorcontrib><creatorcontrib>PARESCHI, L.</creatorcontrib><creatorcontrib>STEFFENSEN, S.</creatorcontrib><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><title>SIAM journal on numerical analysis</title><description>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</description><subject>Adjoints</subject><subject>Applied mathematics</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Discretization</subject><subject>Hyperlinks</subject><subject>Investigations</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Matrices</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Runge Kutta method</subject><subject>Transformations</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLw0AUhQdRsFYX_gAh4EYX0TuZRzLLGqdtMI-SB4gLQ5pMoKVtaqZd-O8diXTh6t7D_e7hcBC6xfCEMXGfsQMeZ0DZGRphEMx2sQvnaARAuI2pIy7RldZrMNrDZIQ-g2gRBn6Q2_J9WKy0iGfSfivyfGJl_lxGMrOmSWrFRSTTwJ-E1muQ-anMg49JHiSxlUytZJEHkbn4SZynSWgt0uQllFF2jS7aaqPVzd8co2Iqc39uh8ns18quCXUPdsM8cGrX4x4nTVMD50LwBhStKkYr1bYVXhKHKSU8AAOwFrdtLRrhLsEziozRw-C777uvo9KHcrvStdpsqp3qjrrEFLueeTb-Y3T_D113x35n0pWmQOI43GXCUI8DVfed1r1qy32_2lb9d4mh_G26PDVt2LuBXetD159A6gBQYJz8ABhBcMQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>HERTY, M.</creator><creator>PARESCHI, L.</creator><creator>STEFFENSEN, S.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><author>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjoints</topic><topic>Applied mathematics</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Discretization</topic><topic>Hyperlinks</topic><topic>Investigations</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Matrices</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Runge Kutta method</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HERTY, M.</creatorcontrib><creatorcontrib>PARESCHI, L.</creatorcontrib><creatorcontrib>STEFFENSEN, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HERTY, M.</au><au>PARESCHI, L.</au><au>STEFFENSEN, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>4</issue><spage>1875</spage><epage>1899</epage><pages>1875-1899</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120865045</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2013-01, Vol.51 (4), p.1875-1899 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417898086 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Adjoints Applied mathematics Coefficients Differential equations Differentials Discretization Hyperlinks Investigations Lagrange multiplier Mathematical analysis Mathematical problems Matrices Methods Numerical analysis Optimal control Optimization Runge Kutta method Transformations |
title | IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPLICIT-EXPLICIT%20RUNGE-KUTTA%20SCHEMES%20FOR%20NUMERICAL%20DISCRETIZATION%20OF%20OPTIMAL%20CONTROL%20PROBLEMS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=HERTY,%20M.&rft.date=2013-01-01&rft.volume=51&rft.issue=4&rft.spage=1875&rft.epage=1899&rft.pages=1875-1899&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/120865045&rft_dat=%3Cjstor_proqu%3E42004056%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1373226759&rft_id=info:pmid/&rft_jstor_id=42004056&rfr_iscdi=true |