IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS

Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2013-01, Vol.51 (4), p.1875-1899
Hauptverfasser: HERTY, M., PARESCHI, L., STEFFENSEN, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1899
container_issue 4
container_start_page 1875
container_title SIAM journal on numerical analysis
container_volume 51
creator HERTY, M.
PARESCHI, L.
STEFFENSEN, S.
description Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.
doi_str_mv 10.1137/120865045
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417898086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42004056</jstor_id><sourcerecordid>42004056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQdRsFYX_gAh4EYX0TuZRzLLGqdtMI-SB4gLQ5pMoKVtaqZd-O8diXTh6t7D_e7hcBC6xfCEMXGfsQMeZ0DZGRphEMx2sQvnaARAuI2pIy7RldZrMNrDZIQ-g2gRBn6Q2_J9WKy0iGfSfivyfGJl_lxGMrOmSWrFRSTTwJ-E1muQ-anMg49JHiSxlUytZJEHkbn4SZynSWgt0uQllFF2jS7aaqPVzd8co2Iqc39uh8ns18quCXUPdsM8cGrX4x4nTVMD50LwBhStKkYr1bYVXhKHKSU8AAOwFrdtLRrhLsEziozRw-C777uvo9KHcrvStdpsqp3qjrrEFLueeTb-Y3T_D113x35n0pWmQOI43GXCUI8DVfed1r1qy32_2lb9d4mh_G26PDVt2LuBXetD159A6gBQYJz8ABhBcMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1373226759</pqid></control><display><type>article</type><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</creator><creatorcontrib>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</creatorcontrib><description>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/120865045</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Adjoints ; Applied mathematics ; Coefficients ; Differential equations ; Differentials ; Discretization ; Hyperlinks ; Investigations ; Lagrange multiplier ; Mathematical analysis ; Mathematical problems ; Matrices ; Methods ; Numerical analysis ; Optimal control ; Optimization ; Runge Kutta method ; Transformations</subject><ispartof>SIAM journal on numerical analysis, 2013-01, Vol.51 (4), p.1875-1899</ispartof><rights>Copyright ©2013 Society for Industrial and Applied Mathematics</rights><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</citedby><cites>FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42004056$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42004056$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>HERTY, M.</creatorcontrib><creatorcontrib>PARESCHI, L.</creatorcontrib><creatorcontrib>STEFFENSEN, S.</creatorcontrib><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><title>SIAM journal on numerical analysis</title><description>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</description><subject>Adjoints</subject><subject>Applied mathematics</subject><subject>Coefficients</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Discretization</subject><subject>Hyperlinks</subject><subject>Investigations</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mathematical problems</subject><subject>Matrices</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Runge Kutta method</subject><subject>Transformations</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLw0AUhQdRsFYX_gAh4EYX0TuZRzLLGqdtMI-SB4gLQ5pMoKVtaqZd-O8diXTh6t7D_e7hcBC6xfCEMXGfsQMeZ0DZGRphEMx2sQvnaARAuI2pIy7RldZrMNrDZIQ-g2gRBn6Q2_J9WKy0iGfSfivyfGJl_lxGMrOmSWrFRSTTwJ-E1muQ-anMg49JHiSxlUytZJEHkbn4SZynSWgt0uQllFF2jS7aaqPVzd8co2Iqc39uh8ns18quCXUPdsM8cGrX4x4nTVMD50LwBhStKkYr1bYVXhKHKSU8AAOwFrdtLRrhLsEziozRw-C777uvo9KHcrvStdpsqp3qjrrEFLueeTb-Y3T_D113x35n0pWmQOI43GXCUI8DVfed1r1qy32_2lb9d4mh_G26PDVt2LuBXetD159A6gBQYJz8ABhBcMQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>HERTY, M.</creator><creator>PARESCHI, L.</creator><creator>STEFFENSEN, S.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</title><author>HERTY, M. ; PARESCHI, L. ; STEFFENSEN, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-d5802c786863ddc066996d0e4aa54aeffa1b325ee9800ddc5f1ffc9d97b08c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjoints</topic><topic>Applied mathematics</topic><topic>Coefficients</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Discretization</topic><topic>Hyperlinks</topic><topic>Investigations</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mathematical problems</topic><topic>Matrices</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Runge Kutta method</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HERTY, M.</creatorcontrib><creatorcontrib>PARESCHI, L.</creatorcontrib><creatorcontrib>STEFFENSEN, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HERTY, M.</au><au>PARESCHI, L.</au><au>STEFFENSEN, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>4</issue><spage>1875</spage><epage>1899</epage><pages>1875-1899</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>Implicit-explicit (IMEX) Runge-Kutta methods play a major rule in the numerical treatment of differential systems governed by stiff and nonstiff terms. This paper discusses order conditions and symplecticity properties of a class of IMEX Runge-Kutta methods in the context of optimal control problems. The analysis of the schemes is based on the continuous optimality system. Using suitable transformations of the adjoint equation, order conditions up to order three are proven, and the relation between adjoint schemes obtained through different transformations is investigated as well. Conditions for the IMEX Runge-Kutta methods to be symplectic are also derived. A numerical example illustrating the theoretical properties is presented.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120865045</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2013-01, Vol.51 (4), p.1875-1899
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1417898086
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Adjoints
Applied mathematics
Coefficients
Differential equations
Differentials
Discretization
Hyperlinks
Investigations
Lagrange multiplier
Mathematical analysis
Mathematical problems
Matrices
Methods
Numerical analysis
Optimal control
Optimization
Runge Kutta method
Transformations
title IMPLICIT-EXPLICIT RUNGE-KUTTA SCHEMES FOR NUMERICAL DISCRETIZATION OF OPTIMAL CONTROL PROBLEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMPLICIT-EXPLICIT%20RUNGE-KUTTA%20SCHEMES%20FOR%20NUMERICAL%20DISCRETIZATION%20OF%20OPTIMAL%20CONTROL%20PROBLEMS&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=HERTY,%20M.&rft.date=2013-01-01&rft.volume=51&rft.issue=4&rft.spage=1875&rft.epage=1899&rft.pages=1875-1899&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/120865045&rft_dat=%3Cjstor_proqu%3E42004056%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1373226759&rft_id=info:pmid/&rft_jstor_id=42004056&rfr_iscdi=true