Formalization of Bernstein Polynomials and Applications to Global Optimization
This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the...
Gespeichert in:
Veröffentlicht in: | Journal of automated reasoning 2013-08, Vol.51 (2), p.151-196 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 151 |
container_title | Journal of automated reasoning |
container_volume | 51 |
creator | Muñoz, César Narkawicz, Anthony |
description | This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems. |
doi_str_mv | 10.1007/s10817-012-9256-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417896921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417896921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOH78AHcFEdxU85pMkyxVHBVEXeg6vLaJRNKkJp2F_no7ziAiuHqLd-7hcgk5AnoGlIrzDFSCKClUparmdcm2yAzmgpW0FnSbzCjUshScsV2yl_MbpZQBVTPysIipR-8-cXQxFNEWlyaFPBoXiqfoP0LsHfpcYOiKi2Hwrv0GczHG4sbHBn3xOIyu3wgOyI6dcHO4ufvkZXH9fHVb3j_e3F1d3JctE2osmaCNwka1dYc4Z7zjliuLwsiuA9VxYZrGKglosZMV72hjpZACJIJomhbYPjlde4cU35cmj7p3uTXeYzBxmTVwEFLVqlqhx3_Qt7hMYWqngUnKaiXmfKJgTbUp5pyM1UNyPaYPDVSvFtbrhfW0sF4trNmUOdmYMbfobcLQuvwTrEQNitcrd7Xm8vQKryb9avCv_AsUkovS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1380369754</pqid></control><display><type>article</type><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><source>SpringerLink Journals</source><creator>Muñoz, César ; Narkawicz, Anthony</creator><creatorcontrib>Muñoz, César ; Narkawicz, Anthony</creatorcontrib><description>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-012-9256-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Automated reasoning ; Computer Science ; Exact sciences and technology ; Logic ; Logic and foundations ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Optimization ; Proof theory and constructive mathematics ; Prototypes ; Representations ; Sciences and techniques of general use ; Strategy ; Symbolic and Algebraic Manipulation ; Upper bounds</subject><ispartof>Journal of automated reasoning, 2013-08, Vol.51 (2), p.151-196</ispartof><rights>Springer Science+Business Media B.V. (outside the USA) 2012</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</citedby><cites>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-012-9256-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-012-9256-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27619464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz, César</creatorcontrib><creatorcontrib>Narkawicz, Anthony</creatorcontrib><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><description>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automated reasoning</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Logic</subject><subject>Logic and foundations</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Proof theory and constructive mathematics</subject><subject>Prototypes</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Strategy</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Upper bounds</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOH78AHcFEdxU85pMkyxVHBVEXeg6vLaJRNKkJp2F_no7ziAiuHqLd-7hcgk5AnoGlIrzDFSCKClUparmdcm2yAzmgpW0FnSbzCjUshScsV2yl_MbpZQBVTPysIipR-8-cXQxFNEWlyaFPBoXiqfoP0LsHfpcYOiKi2Hwrv0GczHG4sbHBn3xOIyu3wgOyI6dcHO4ufvkZXH9fHVb3j_e3F1d3JctE2osmaCNwka1dYc4Z7zjliuLwsiuA9VxYZrGKglosZMV72hjpZACJIJomhbYPjlde4cU35cmj7p3uTXeYzBxmTVwEFLVqlqhx3_Qt7hMYWqngUnKaiXmfKJgTbUp5pyM1UNyPaYPDVSvFtbrhfW0sF4trNmUOdmYMbfobcLQuvwTrEQNitcrd7Xm8vQKryb9avCv_AsUkovS</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Muñoz, César</creator><creator>Narkawicz, Anthony</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130801</creationdate><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><author>Muñoz, César ; Narkawicz, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automated reasoning</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Logic</topic><topic>Logic and foundations</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Proof theory and constructive mathematics</topic><topic>Prototypes</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Strategy</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz, César</creatorcontrib><creatorcontrib>Narkawicz, Anthony</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz, César</au><au>Narkawicz, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formalization of Bernstein Polynomials and Applications to Global Optimization</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>51</volume><issue>2</issue><spage>151</spage><epage>196</epage><pages>151-196</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10817-012-9256-3</doi><tpages>46</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-7433 |
ispartof | Journal of automated reasoning, 2013-08, Vol.51 (2), p.151-196 |
issn | 0168-7433 1573-0670 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417896921 |
source | SpringerLink Journals |
subjects | Algorithms Artificial Intelligence Automated reasoning Computer Science Exact sciences and technology Logic Logic and foundations Mathematical Logic and Formal Languages Mathematical Logic and Foundations Mathematical logic, foundations, set theory Mathematics Optimization Proof theory and constructive mathematics Prototypes Representations Sciences and techniques of general use Strategy Symbolic and Algebraic Manipulation Upper bounds |
title | Formalization of Bernstein Polynomials and Applications to Global Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formalization%20of%20Bernstein%20Polynomials%20and%20Applications%20to%20Global%20Optimization&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Mu%C3%B1oz,%20C%C3%A9sar&rft.date=2013-08-01&rft.volume=51&rft.issue=2&rft.spage=151&rft.epage=196&rft.pages=151-196&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-012-9256-3&rft_dat=%3Cproquest_cross%3E1417896921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1380369754&rft_id=info:pmid/&rfr_iscdi=true |