Formalization of Bernstein Polynomials and Applications to Global Optimization

This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2013-08, Vol.51 (2), p.151-196
Hauptverfasser: Muñoz, César, Narkawicz, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 151
container_title Journal of automated reasoning
container_volume 51
creator Muñoz, César
Narkawicz, Anthony
description This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.
doi_str_mv 10.1007/s10817-012-9256-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417896921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417896921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOH78AHcFEdxU85pMkyxVHBVEXeg6vLaJRNKkJp2F_no7ziAiuHqLd-7hcgk5AnoGlIrzDFSCKClUparmdcm2yAzmgpW0FnSbzCjUshScsV2yl_MbpZQBVTPysIipR-8-cXQxFNEWlyaFPBoXiqfoP0LsHfpcYOiKi2Hwrv0GczHG4sbHBn3xOIyu3wgOyI6dcHO4ufvkZXH9fHVb3j_e3F1d3JctE2osmaCNwka1dYc4Z7zjliuLwsiuA9VxYZrGKglosZMV72hjpZACJIJomhbYPjlde4cU35cmj7p3uTXeYzBxmTVwEFLVqlqhx3_Qt7hMYWqngUnKaiXmfKJgTbUp5pyM1UNyPaYPDVSvFtbrhfW0sF4trNmUOdmYMbfobcLQuvwTrEQNitcrd7Xm8vQKryb9avCv_AsUkovS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1380369754</pqid></control><display><type>article</type><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><source>SpringerLink Journals</source><creator>Muñoz, César ; Narkawicz, Anthony</creator><creatorcontrib>Muñoz, César ; Narkawicz, Anthony</creatorcontrib><description>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-012-9256-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Automated reasoning ; Computer Science ; Exact sciences and technology ; Logic ; Logic and foundations ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Mathematical logic, foundations, set theory ; Mathematics ; Optimization ; Proof theory and constructive mathematics ; Prototypes ; Representations ; Sciences and techniques of general use ; Strategy ; Symbolic and Algebraic Manipulation ; Upper bounds</subject><ispartof>Journal of automated reasoning, 2013-08, Vol.51 (2), p.151-196</ispartof><rights>Springer Science+Business Media B.V. (outside the USA) 2012</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</citedby><cites>FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-012-9256-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-012-9256-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27619464$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz, César</creatorcontrib><creatorcontrib>Narkawicz, Anthony</creatorcontrib><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><description>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automated reasoning</subject><subject>Computer Science</subject><subject>Exact sciences and technology</subject><subject>Logic</subject><subject>Logic and foundations</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical logic, foundations, set theory</subject><subject>Mathematics</subject><subject>Optimization</subject><subject>Proof theory and constructive mathematics</subject><subject>Prototypes</subject><subject>Representations</subject><subject>Sciences and techniques of general use</subject><subject>Strategy</subject><subject>Symbolic and Algebraic Manipulation</subject><subject>Upper bounds</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAURYMoOH78AHcFEdxU85pMkyxVHBVEXeg6vLaJRNKkJp2F_no7ziAiuHqLd-7hcgk5AnoGlIrzDFSCKClUparmdcm2yAzmgpW0FnSbzCjUshScsV2yl_MbpZQBVTPysIipR-8-cXQxFNEWlyaFPBoXiqfoP0LsHfpcYOiKi2Hwrv0GczHG4sbHBn3xOIyu3wgOyI6dcHO4ufvkZXH9fHVb3j_e3F1d3JctE2osmaCNwka1dYc4Z7zjliuLwsiuA9VxYZrGKglosZMV72hjpZACJIJomhbYPjlde4cU35cmj7p3uTXeYzBxmTVwEFLVqlqhx3_Qt7hMYWqngUnKaiXmfKJgTbUp5pyM1UNyPaYPDVSvFtbrhfW0sF4trNmUOdmYMbfobcLQuvwTrEQNitcrd7Xm8vQKryb9avCv_AsUkovS</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Muñoz, César</creator><creator>Narkawicz, Anthony</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130801</creationdate><title>Formalization of Bernstein Polynomials and Applications to Global Optimization</title><author>Muñoz, César ; Narkawicz, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-370b9ab9c6daa534d4f49fa7e8dd19d47ebbf981afad824d0bf878718a17bbc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automated reasoning</topic><topic>Computer Science</topic><topic>Exact sciences and technology</topic><topic>Logic</topic><topic>Logic and foundations</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical logic, foundations, set theory</topic><topic>Mathematics</topic><topic>Optimization</topic><topic>Proof theory and constructive mathematics</topic><topic>Prototypes</topic><topic>Representations</topic><topic>Sciences and techniques of general use</topic><topic>Strategy</topic><topic>Symbolic and Algebraic Manipulation</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz, César</creatorcontrib><creatorcontrib>Narkawicz, Anthony</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz, César</au><au>Narkawicz, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formalization of Bernstein Polynomials and Applications to Global Optimization</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>51</volume><issue>2</issue><spage>151</spage><epage>196</epage><pages>151-196</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>This paper presents a formalization in higher-order logic of a practical representation of multivariate Bernstein polynomials. Using this representation, an algorithm for finding lower and upper bounds of the minimum and maximum values of a polynomial has been formalized and verified correct in the Prototype Verification System (PVS). The algorithm is used in the definition of proof strategies for formally and automatically solving polynomial global optimization problems.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10817-012-9256-3</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-7433
ispartof Journal of automated reasoning, 2013-08, Vol.51 (2), p.151-196
issn 0168-7433
1573-0670
language eng
recordid cdi_proquest_miscellaneous_1417896921
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Automated reasoning
Computer Science
Exact sciences and technology
Logic
Logic and foundations
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Mathematical logic, foundations, set theory
Mathematics
Optimization
Proof theory and constructive mathematics
Prototypes
Representations
Sciences and techniques of general use
Strategy
Symbolic and Algebraic Manipulation
Upper bounds
title Formalization of Bernstein Polynomials and Applications to Global Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formalization%20of%20Bernstein%20Polynomials%20and%20Applications%20to%20Global%20Optimization&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Mu%C3%B1oz,%20C%C3%A9sar&rft.date=2013-08-01&rft.volume=51&rft.issue=2&rft.spage=151&rft.epage=196&rft.pages=151-196&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-012-9256-3&rft_dat=%3Cproquest_cross%3E1417896921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1380369754&rft_id=info:pmid/&rfr_iscdi=true