De Giorgi type results for elliptic systems
We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical D...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2013-07, Vol.47 (3-4), p.809-823 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 823 |
---|---|
container_issue | 3-4 |
container_start_page | 809 |
container_title | Calculus of variations and partial differential equations |
container_volume | 47 |
creator | Fazly, Mostafa Ghoussoub, Nassif |
description | We consider the following elliptic system
where
and
, and prove, under various conditions on the nonlinearity
H
that, at least in low dimensions, a solution
is necessarily one-dimensional whenever each one of its components
u
i
is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of
an orientable system
, which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability. |
doi_str_mv | 10.1007/s00526-012-0536-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417892798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417892798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAF0FW989sdnOUqlUoeNHzsgmTkpI2cSeB9tu7JR5E8DQzzO89Ho-xaynupRD2gYQwKudCKi6Mzvn-hM0k6HQ5bU7ZTBQAXOV5cc4uiDZCSOMUzNjdE2bLpovrJhsOPWYRaWwHyuouZti2TT80VUYHGnBLl-ysDi3h1c-cs8-X54_FK1-9L98WjyteaSgGXuY5YOmKWkHQytYAzpmyKBFrDeH4AuUkmrTbUEGFGACEDgp1jaUyes5uJ98-dl8j0uC3DVUpTdhhN5KXIK0rlC1cQm_-oJtujLuUzktthVPSGp0oOVFV7Igi1r6PzTbEg5fCH-vzU30-1eeP9fl90qhJQ4ndrTH-cv5X9A2TKXGT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370821753</pqid></control><display><type>article</type><title>De Giorgi type results for elliptic systems</title><source>SpringerLink (Online service)</source><creator>Fazly, Mostafa ; Ghoussoub, Nassif</creator><creatorcontrib>Fazly, Mostafa ; Ghoussoub, Nassif</creatorcontrib><description>We consider the following elliptic system
where
and
, and prove, under various conditions on the nonlinearity
H
that, at least in low dimensions, a solution
is necessarily one-dimensional whenever each one of its components
u
i
is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of
an orientable system
, which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-012-0536-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Boundary conditions ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dealing ; Dirichlet problem ; Inequalities ; Linear systems ; Liouville theorem ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Spectra ; Stability ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2013-07, Vol.47 (3-4), p.809-823</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</citedby><cites>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-012-0536-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-012-0536-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fazly, Mostafa</creatorcontrib><creatorcontrib>Ghoussoub, Nassif</creatorcontrib><title>De Giorgi type results for elliptic systems</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider the following elliptic system
where
and
, and prove, under various conditions on the nonlinearity
H
that, at least in low dimensions, a solution
is necessarily one-dimensional whenever each one of its components
u
i
is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of
an orientable system
, which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dealing</subject><subject>Dirichlet problem</subject><subject>Inequalities</subject><subject>Linear systems</subject><subject>Liouville theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spectra</subject><subject>Stability</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAF0FW989sdnOUqlUoeNHzsgmTkpI2cSeB9tu7JR5E8DQzzO89Ho-xaynupRD2gYQwKudCKi6Mzvn-hM0k6HQ5bU7ZTBQAXOV5cc4uiDZCSOMUzNjdE2bLpovrJhsOPWYRaWwHyuouZti2TT80VUYHGnBLl-ysDi3h1c-cs8-X54_FK1-9L98WjyteaSgGXuY5YOmKWkHQytYAzpmyKBFrDeH4AuUkmrTbUEGFGACEDgp1jaUyes5uJ98-dl8j0uC3DVUpTdhhN5KXIK0rlC1cQm_-oJtujLuUzktthVPSGp0oOVFV7Igi1r6PzTbEg5fCH-vzU30-1eeP9fl90qhJQ4ndrTH-cv5X9A2TKXGT</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Fazly, Mostafa</creator><creator>Ghoussoub, Nassif</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>De Giorgi type results for elliptic systems</title><author>Fazly, Mostafa ; Ghoussoub, Nassif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dealing</topic><topic>Dirichlet problem</topic><topic>Inequalities</topic><topic>Linear systems</topic><topic>Liouville theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spectra</topic><topic>Stability</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazly, Mostafa</creatorcontrib><creatorcontrib>Ghoussoub, Nassif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazly, Mostafa</au><au>Ghoussoub, Nassif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Giorgi type results for elliptic systems</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>47</volume><issue>3-4</issue><spage>809</spage><epage>823</epage><pages>809-823</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider the following elliptic system
where
and
, and prove, under various conditions on the nonlinearity
H
that, at least in low dimensions, a solution
is necessarily one-dimensional whenever each one of its components
u
i
is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of
an orientable system
, which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-012-0536-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2013-07, Vol.47 (3-4), p.809-823 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_miscellaneous_1417892798 |
source | SpringerLink (Online service) |
subjects | Analysis Boundary conditions Calculus of variations Calculus of Variations and Optimal Control Optimization Control Dealing Dirichlet problem Inequalities Linear systems Liouville theorem Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Spectra Stability Systems Theory Theorems Theoretical |
title | De Giorgi type results for elliptic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Giorgi%20type%20results%20for%20elliptic%20systems&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Fazly,%20Mostafa&rft.date=2013-07-01&rft.volume=47&rft.issue=3-4&rft.spage=809&rft.epage=823&rft.pages=809-823&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-012-0536-x&rft_dat=%3Cproquest_cross%3E1417892798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370821753&rft_id=info:pmid/&rfr_iscdi=true |