De Giorgi type results for elliptic systems

We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2013-07, Vol.47 (3-4), p.809-823
Hauptverfasser: Fazly, Mostafa, Ghoussoub, Nassif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 823
container_issue 3-4
container_start_page 809
container_title Calculus of variations and partial differential equations
container_volume 47
creator Fazly, Mostafa
Ghoussoub, Nassif
description We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of an orientable system , which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.
doi_str_mv 10.1007/s00526-012-0536-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1417892798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417892798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAF0FW989sdnOUqlUoeNHzsgmTkpI2cSeB9tu7JR5E8DQzzO89Ho-xaynupRD2gYQwKudCKi6Mzvn-hM0k6HQ5bU7ZTBQAXOV5cc4uiDZCSOMUzNjdE2bLpovrJhsOPWYRaWwHyuouZti2TT80VUYHGnBLl-ysDi3h1c-cs8-X54_FK1-9L98WjyteaSgGXuY5YOmKWkHQytYAzpmyKBFrDeH4AuUkmrTbUEGFGACEDgp1jaUyes5uJ98-dl8j0uC3DVUpTdhhN5KXIK0rlC1cQm_-oJtujLuUzktthVPSGp0oOVFV7Igi1r6PzTbEg5fCH-vzU30-1eeP9fl90qhJQ4ndrTH-cv5X9A2TKXGT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1370821753</pqid></control><display><type>article</type><title>De Giorgi type results for elliptic systems</title><source>SpringerLink (Online service)</source><creator>Fazly, Mostafa ; Ghoussoub, Nassif</creator><creatorcontrib>Fazly, Mostafa ; Ghoussoub, Nassif</creatorcontrib><description>We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of an orientable system , which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-012-0536-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Analysis ; Boundary conditions ; Calculus of variations ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dealing ; Dirichlet problem ; Inequalities ; Linear systems ; Liouville theorem ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Spectra ; Stability ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2013-07, Vol.47 (3-4), p.809-823</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</citedby><cites>FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-012-0536-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-012-0536-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fazly, Mostafa</creatorcontrib><creatorcontrib>Ghoussoub, Nassif</creatorcontrib><title>De Giorgi type results for elliptic systems</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of an orientable system , which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Calculus of variations</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dealing</subject><subject>Dirichlet problem</subject><subject>Inequalities</subject><subject>Linear systems</subject><subject>Liouville theorem</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spectra</subject><subject>Stability</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAF0FW989sdnOUqlUoeNHzsgmTkpI2cSeB9tu7JR5E8DQzzO89Ho-xaynupRD2gYQwKudCKi6Mzvn-hM0k6HQ5bU7ZTBQAXOV5cc4uiDZCSOMUzNjdE2bLpovrJhsOPWYRaWwHyuouZti2TT80VUYHGnBLl-ysDi3h1c-cs8-X54_FK1-9L98WjyteaSgGXuY5YOmKWkHQytYAzpmyKBFrDeH4AuUkmrTbUEGFGACEDgp1jaUyes5uJ98-dl8j0uC3DVUpTdhhN5KXIK0rlC1cQm_-oJtujLuUzktthVPSGp0oOVFV7Igi1r6PzTbEg5fCH-vzU30-1eeP9fl90qhJQ4ndrTH-cv5X9A2TKXGT</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Fazly, Mostafa</creator><creator>Ghoussoub, Nassif</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>De Giorgi type results for elliptic systems</title><author>Fazly, Mostafa ; Ghoussoub, Nassif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-b664eb89f24a327f44885b9beef34a4eb84281e54a47ac4ceea4403a2e3feb253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Calculus of variations</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dealing</topic><topic>Dirichlet problem</topic><topic>Inequalities</topic><topic>Linear systems</topic><topic>Liouville theorem</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spectra</topic><topic>Stability</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazly, Mostafa</creatorcontrib><creatorcontrib>Ghoussoub, Nassif</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazly, Mostafa</au><au>Ghoussoub, Nassif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Giorgi type results for elliptic systems</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>47</volume><issue>3-4</issue><spage>809</spage><epage>823</epage><pages>809-823</pages><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We consider the following elliptic system where and , and prove, under various conditions on the nonlinearity H that, at least in low dimensions, a solution is necessarily one-dimensional whenever each one of its components u i is monotone in one direction. Just like in the proofs of the classical De Giorgi’s conjecture in dimension 2 (Ghoussoub-Gui) and in dimension 3 (Ambrosio-Cabré), the key step is a Liouville theorem for linear systems. We also give an extension of a geometric Poincaré inequality to systems and use it to establish De Giorgi type results for stable solutions as well as additional rigidity properties stating that the gradients of the various components of the solutions must be parallel. We introduce and exploit the concept of an orientable system , which seems to be key for dealing with systems of three or more equations. For such systems, the notion of a stable solution in a variational sense coincide with the pointwise (or spectral) concept of stability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00526-012-0536-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2013-07, Vol.47 (3-4), p.809-823
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_miscellaneous_1417892798
source SpringerLink (Online service)
subjects Analysis
Boundary conditions
Calculus of variations
Calculus of Variations and Optimal Control
Optimization
Control
Dealing
Dirichlet problem
Inequalities
Linear systems
Liouville theorem
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Spectra
Stability
Systems Theory
Theorems
Theoretical
title De Giorgi type results for elliptic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A15%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Giorgi%20type%20results%20for%20elliptic%20systems&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Fazly,%20Mostafa&rft.date=2013-07-01&rft.volume=47&rft.issue=3-4&rft.spage=809&rft.epage=823&rft.pages=809-823&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-012-0536-x&rft_dat=%3Cproquest_cross%3E1417892798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1370821753&rft_id=info:pmid/&rfr_iscdi=true